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SUMMARY

Malignant pleural effusion (MPE) is a complication of lung cancer that can be used
as an alternative method for tissue sampling because it is generally simple and
minimally invasive. Our study evaluated the diagnostic potential of non–small-
cell lung carcinoma (NSCLC)-associated MPE in terms of understanding tumor
heterogeneity and identifying response factors for EGFR tyrosine kinase inhibi-
tor (TKI) therapy. We performed a single-cell RNA sequencing analysis of
31,743 cells isolated from the MPEs of 9 patients with NSCLC (5 resistant and 4
sensitive to EGFR TKI) with EGFR mutations. Interestingly, lung epithelial precur-
sor-like cells with upregulated GNB2L1 and CAV1 expression were enriched
in the EGFR TKI-resistant group. Moreover, GZMK upregulated transitional
effector T cells, and plasmacytoid dendritic cells were significantly enriched in
the EGFR TKI-resistant patients. Our results suggest that cellular plasticity and
immunosuppressive microenvironment in MPEs are potentially associated with
the TKI response of patients with EGFR-mutated NSCLC.
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INTRODUCTION

Advanced non-small-cell lung cancer (NSCLC) is the leading cause of cancer-related deaths globally and

accounts for 85% of lung cancer cases (Herbst et al., 2008). Patients with epidermal growth factor receptor

(EGFR)-mutated NSCLC show sensitivity to EGFR tyrosine kinase inhibitors (TKIs) such as gefitinib, erloti-

nib, and osimertinib (Riely et al., 2006). However, approximately 10% of patients with EGFR-mutated

NSCLC exhibit primary resistance to EGFR TKIs, showing a clinical feature of disease progression during

the initial course of EGFR-TKI therapy.

Previous studies on primary resistance to EGFR-TKIs have reported actionable or novel gene alterations

with targeted exome sequencing analysis using surgical tumors and biopsy specimens. Representative

types of known alterations are as follows: MET amplification (Lai et al., 2019), de novo T790M (Su et al.,

2018; Zhong et al., 2017), ERBB2 amplification (Zhong et al., 2017), BIM deletion (Lee et al., 2013),

PIK3CA mutation (Su et al., 2018), and PTEN mutation (Su et al., 2018; Zhong et al., 2017). Despite various

studies, the mechanism of resistance is unknown in up to 50% of cases (Leonetti et al., 2019). Recently, as

immunotherapy has emerged, the relationship between the PD-L1 expression and TKI response has also

been reported (Su et al., 2018; Takashima et al., 2018), but there have been few studies on the association

between TKI resistance and the tumor microenvironment (TME).

Patients with many advanced-stage NSCLC experience malignant pleural effusion (MPE). MPE causes

discomfort and pain for the patient and requires additional management, but it can be a resource for

the pathologic and genetic analysis of cancer. Basak et al. suggested that MPE is a proper model to inves-

tigate intra-tumoral heterogeneity in lung cancer because it incorporates various MPE-fluid component

cells, including tumor and stromal cells (Basak et al., 2009). Donnenberg et al. reported several important

advantages of MPE, such as an abundant amount of T cells and a proper cross-section of tumor-infiltrating
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Figure 1. Cell types identified from MPE samples of NSCLC patients using scRNA-seq

(A) The workflow of the overall study design.

(B–D) The t-SNE projection of 31,743 single cells from the MPEs of 9 NSCLC patients shows 5 major cell types, including epithelial, mesothelial, T, B, and

myeloid cells. A single cell corresponds to each point, and colors are assigned according to cell type (B), cluster (C), and patient (D).

(E) Heatmap for Z score normalized expression profiles of DEGs in each cluster (highlighted genes are known cell markers).

(F) Cell type composition of each patient.

(G) Boxplot for the proportion of major cell types in the resistant and sensitive groups. MPE, malignant pleural effusion; NSCLC, non–small-cell lung

carcinoma; t-SNA, t-stochastic neighbor embedding; DEGs, differentially expressed genes.
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lymphocytes (TIL) compared with the spatial heterogeneity of TIL in biopsy specimens (Donnenberg et al.,

2019).

The development of single-cell RNA sequencing (scRNA-seq) has enabled the analysis of extensive tumor

heterogeneity and the identification of various cell populations at the single-cell level. However, the

biggest hurdle to scRNA-seq is the limited availability of samples because meticulous preparation proced-

ures are required to separate adherent cells immediately after samples are collected. This limitation pre-

vents the use of cryopreserved tissue samples without labor-intensive immediate cell separation. Hence,

most previous scRNA-seq studies on lung cancers have utilized primary and metastatic lesions to under-

stand their cellular features and TME (Guo et al., 2018; Kim et al., 2020; Lambrechts et al., 2018; Maynard

et al., 2020). However, cryopreserved pleural effusion with simple pre-freezing preparation can overcome

this limitation. Recently, Huang et al. reported that MPEs from patients with NSCLC harbor various types of

immune cells such as T and B cells and macrophages, which can provide therapeutic targets and

biomarkers for treating NSCLC (Huang et al., 2021). Kashima et al. also utilized a pleural effusion sample

from an EGFR-mutated lung cancer patient to validate their findings from the scRNA-seq analysis of TKI

resistant cell line models (Kashima et al., 2021).

Here, we sought to establish the TKI response factors with cryopreserved MPEs from patients with EGFR-

mutated NSCLC. Transitional effector T cells with high GZMK expression and plasmacytoid dendritic

cells were significantly enriched in the TKI-resistant group. Furthermore, lung epithelial precursor-like

cells were enriched in the EGFR TKI-resistant group, while suprabasal-like cells were more prominent

in the sensitive group. In addition, cancer-testis (CT) antigen genes such as CSAG1 and MAGEA3, which

are frequently overexpressed in magnoid lung cancer subtypes, were upregulated in the epithelial cells

of the TKI-resistant group compared to those in the sensitive one. In contrast, the expression of tumor-

specific HLA class II and JAK-STAT pathway genes regulating the HLA class II expression was significantly

downregulated in the TKI-resistant group. Overall, we demonstrated that the cellular plasticity of

malignant epithelial cells and immune microenvironment are potentially associated with the TKI

response of patients with NSCLC.

RESULTS

Single-cell RNA-sequencing analysis from pleural effusion samples of patients with non–

small-cell lung carcinoma

We performed a scRNA-seq analysis of 38,414 cells isolated from the MPEs of 9 patients with NSCLC,

including 5 EGFR-TKI resistant (LCPE.R) and 4 sensitive patients (LCPE.S) with EGFR mutations (Table

S1), to investigate the heterogeneity of cancer cells and the tumor microenvironment (Figure 1A). After

quality control, single-cell transcriptome profiles were obtained from a total of 31,743 cells. In addition,

doublets were removed from the scRNA-seq datasets of each patient using Scrublet (Wolock et al.,

2019), and an average of 4,268 cells per sample was obtained. The observed average number of genes

per cell was 1,103, and the average number of unique molecular identifiers (UMIs) per cell was 5,537

(Figures S1A and S1B). To investigate the composition of cell types in MPE, we performed unsupervised

graph cluster analysis and identified five major cell types (Figures 1B-1D). Cell types were annotated using

SingleR (Aran et al., 2019) and previously known cell type markers (epithelial cells: EPCAM, KRT19; meso-

thelial cells: VCAM1, RAMP2; T cells: PTPRC, CD3D; B cells: CD79A, MS4A1; myeloid cells: S100A8, LYZ;

Figure 1E). Unlike immune cells, such as T, myeloid, and B cells, epithelial cells were largely distinguished

by individual patients (Figure 1D). The cell-type composition for each patient was heterogeneous

(Figures 1F and S1C). In particular, the ratio of myeloid cells was enriched in the EGFR-TKI sensitive group

compared to the resistant group (p = 0.016, Wilcoxon rank-sum test) (Figure 1G). To investigate whether

MPE-derived cells could represent the characteristics of tissue-derived cells (Lambrechts et al., 2018), we

performed a co-clustering analysis and confirmed that cells were well clustered by their types rather
iScience 25, 105358, November 18, 2022 3
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than their tissue origin (Figure 2). Endothelial cells were observed only from tissue-derived cells and not

from MPE. In addition, mesothelial cells from MPE clustered together with fibroblasts from tissue-derived

cells.
Tumor heterogeneity conferring tyrosine kinase inhibitor resistance

We performed an additional sub-clustering analysis of epithelial cells at high resolution to further charac-

terize tumor heterogeneity and confirm the differences between the EGFR-TKI resistant and sensitive

groups (Figure 3A). As mentioned above, epithelial cells were mainly grouped by individual patients

(Figure 3B). We also inferred large-scale chromosomal CNVs in each epithelial cell. The CNV profiles

showed significant levels of alterations and heterogeneity, implying that the epithelial cells in MPEs

were mostly malignant. In addition, amplification of chr1q and chr7 was recurrently observed in our

data, consistent with the previously reported lung adenocarcinoma CNV profiles (Cancer Genome Atlas

Research Network, 2014) (Figure 3C).

Additionally, we investigated the expression profiles of a group of genes related to EGFR-TKI resistance

and found that KRAS, ERBB2, and IGF1R were overexpressed in epithelial cells of three TKI-resistant sam-

ples (LCPE.R3, LCPE.R4, and LCPE.R5, respectively) (Figure 3D). To validate TKI response based on the

above gene expression profiles, we performed drug sensitivity assays using cell cultures derived from

LCPE.R4 with ERBB2 overexpressed and identified considerable sensitivity to afatinib, an irreversible TKI

that targets both EGFR and ERBB2 (Wind et al., 2017), and resistance to other TKIs without ERBB2 inhibiting

activity (Figure 3E). Taken together, these drug results suggest that the expression of other signaling

pathway genes, such as ERBB2, can affect TKI resistance.
Cellular plasticity as a mechanism of tyrosine kinase inhibitor resistance

Furthermore, to understand the association between tumor cellular plasticity and EGFR-TKI resistance, we

inferred the cellular origins of epithelial cells from MPEs through correlation analysis with previously re-

ported cell types of airway epithelium (Figure S2A) (Deprez et al., 2020). Interestingly, the precursor-like cells

were relatively enriched in the resistant group, while the suprabasal-like cells were more prominent in the

sensitive group (Figures 3F and 3G). We performed differentially expressed genes (DEG) analysis to deter-

mine the characteristics of these two cell types and observed the upregulation of SCGB3A2, a club cell
4 iScience 25, 105358, November 18, 2022
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Figure 3. Heterogeneity of epithelial cells from MPE samples

(A and B) Sub-clusters of MPE-derived epithelial cells from nine NSCLC patients were shown by t-SNE projection, and the color was indicated by cluster

(A) and patient (B).

(C) CNV was inferred using gene expression levels of epithelial cells. The top of the heatmap indicates CNVs identified from MPE-derived single cells, and

the bottom indicates CNVs of lung adenocarcinoma (LUAD) from The Cancer Genome Atlas (TCGA) project. Red and blue represent copy gain and loss,

respectively.

(D) Heatmap for known EGFR-TKI resistance-related genes. The gene expression was normalized by the Z score.

(E) EGFR-TKI drug response test for LCPE.R4 using patient-derived cells.

(F) Cell type composition of each patient.

(G) Boxplot for the proportion of epithelial subtypes in the resistant and sensitive groups. MPE, malignant pleural effusion; NSCLC, non–small-cell lung

carcinoma; t-SNA, t-stochastic neighbor embedding; CNV, copy number variation; EGFR-TKI, epidermal growth factor receptor-tyrosine kinase inhibitor.
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precursormarker (He et al., 2021), in the precursor-like cells (Figure S2B). In addition, genes related to tumor

cell proliferation, such as GNB2L1 and ZFAS1, had higher expression levels in the precursor-like cells than

other lung epithelial cell subtypes identified in MPEs (Figure S2B) (Duff and Long, 2017; Fan et al., 2020). In

contrast, the expression of tumor suppressor genes, including KLF6 and RHOB, was upregulated in the

suprabasal-like cells (Figure S2C) (Ito et al., 2004; Mazieres et al., 2004). Through gene set enrichment anal-

ysis (GSEA), we found that theMyc targets V1 and TNF-a signaling pathways were enriched in the precursor-

like and suprabasal-like cells, respectively (Figure S2D). Interestingly, the expression of MHC class II genes

(HLA-DQB1 andHLA-DRB5) was higher in the suprabasal-like cells than that in other epithelial cell subtypes.
Decreased human leukocyte antigen class II expression in epithelial cells of epidermal growth

factor receptor-tyrosine kinase inhibitor -resistant and clinical validation

Next, the DEGs of epithelial cells between EGFR-TKI resistant and sensitive patients were analyzed. Epithe-

lial cells of each patient were combined to generate a pseudo-bulk sample for DEG analysis. As a result, we

identified 673 upregulated and 628 downregulated genes in the EGFR-TKI-resistant group compared with

the sensitive group (p < 0.05 and absolute fold-change > 1.5). According to a previous large-scale multi-

omics study of lung adenocarcinoma by The Cancer Genome Atlas project, EGFR-mutant lung adenocar-

cinoma mostly belongs to the bronchial subtype (Cancer Genome Atlas Research Network, 2014). Interest-

ingly, CSAG1 and MAGEA3, known as cancer-testis (CT) genes, were upregulated in the epithelial cells of

the resistant group (Figure 4A); previous studies have shown that these genes aremost frequently activated

in the magnoid subtype of lung adenocarcinoma (Yao et al., 2014). Hence, the expression profiles of mag-

noid subtype-related genes could be associated with resistance to the EGFR-TKI therapy.

Through GSEA, we found that the downregulated genes in the epithelial cells of the resistant group were

associated with the immune response (Figure 4B). In particular, HLA-DPB1, HLA-DQA1, and HLA-DRB1

showed significantly lower expression levels in the resistant group than those in the sensitive group

(Figures 4C and S3A), which is concordant with the DEG analysis results between lung epithelial precur-

sor-like and suprabasal-like cells. To verify our findings, we examined whether HLA class II genes were

expressed in the published human lung cancer scRNA-seq data (Lambrechts et al., 2018). As a result,

most HLA class II genes were highly expressed in immune cells, such as T, myeloid, and B cells, but

some HLA class II genes were also highly expressed in epithelial cells (Figure S3B). Regulation of MHC class

II expression is known to bemediated by the transactivator geneCIITA and induced by IFNG (Steimle et al.,

1994). Although there was no apparent difference in the expression levels of IFNG between the two groups,

the expression of CIITA was increased in the EGFR-TKI sensitive group (Figure S3C). To gain deeper

insights into the causes of the difference in the HLA class II gene expression levels, we investigated the up-

stream JAK-STAT signaling pathway genes regulating HLA class II genes. Interestingly, we found that the

expression levels of JAK-STAT signaling pathway-related genes tended to increase in the EGFR-TKI sen-

sitive group (Figure S3C). By adopting a scoring scheme for JAK-STAT pathway activity, we confirmed

that the JAK-STAT pathway was significantly activated in the sensitive group (p = 0.032) (Figure 4D).

To validate the distinct expression patterns of the three MHC class II proteins in the epithelial cells of the

primary tumor, formalin-fixed and paraffin-embedded (FFPE) slides for 19 TKI-resistant and 45 TKI-sensitive

patients underwent immunohistochemistry (IHC) staining (Figures 4E and S3D). The IHC scores of HLA-

DPB1 (p = 0.001) and HLA-DRB1 (p = 0.007) were significantly lower in the TKI-resistant group (Figure 4F).

Although there was no statistical significance (p = 0.2), the IHC score of HLA-DQA1 was also lower in the

resistant group. Moreover, PFS was significantly better in patients with high (median IHC score HLA-DPB1

240, HLA-DQA1 30, HLA-DRB1 35) MHC class II expression than those with low MHC class II expression
6 iScience 25, 105358, November 18, 2022
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Figure 4. Continued

(C) Comparison of HLA class II (HLA-DPB1, HLA-DQA1, and HLA-DRB1) expression between the TKI resistant (LCPE.R) and sensitive (LCPE.S) groups

(Wilcoxon rank-sum test).

(D) Boxplot for the comparison of JAK-STAT score between the resistant and sensitive groups (p = 0.032, Wilcoxon rank-sum test).

(E) IHC staining of MHC class II in the two resistant (top) and two sensitive patient samples (bottom). 1003magnification and 2003 partial magnification with

a lattice length of 125 mm.

(F) Boxplot for the comparison of IHC scores based on MHC class II (HLA-DPB1, HLA-DQA1, and HLA-DRB1) expression between the resistant and sensitive

groups.

(G) Survival plot showing PFS dependence on high and low HLA-DPB1 (HR 2.837, 95% CI 1.333-6.041), HLA-DQA1 (HR 2.219, 95% CI 1.036-4.749), and HLA-

DRB1 (HR 2.417, 95% CI 1.123-5.199) subtype expression.

(H) Flow cytometry analysis of interferon (IFN)-g producing MPE cells from the two EGFR-TKI resistant (left) and two sensitive patient samples (right). TKI,

tyrosine kinase inhibitor; DEGs, differentially expressed genes; IHC, immunohistochemistry; PFS, progression-free survival.
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(Figure 4G). The expression levels of MAGEA3, CSAG1, CIITA and HLA-DR in MPE-derived epithelial cells

were further validated using multiplex immunofluorescence staining, which showed increased MAGEA3

and CSAG1 as well as decreased CIITA and HLA-DR in TKI-resistant group (Figures S4A and S4B). We veri-

fied that HLA-DR+ epithelial cells were increased in the EGFR-TKI sensitive group through flow cytometry

analysis (Figures S4C and S4D). In addition, HLA-DR and HLA-DQ were notably upregulated in EGFR-TKI

sensitive MPE cells (Figures S4E). To confirm the expression of IFN-g in the tumor microenvironment, IFN-

g-producing CD3+ cells after PMA and ionomycin stimulation were higher in TKI-sensitiveMPEs than in TKI-

resistant MPEs (Figure 4H).

Enrichment of transitional effector T cells in epidermal growth factor receptor-tyrosine

kinase inhibitor resistant patients

We performed a co-clustering analysis of T cells from primary tumors (Lambrechts et al., 2018) and MPEs.

Nine helper T cell clusters were characterized by the expression of CD4, CCR4, CCR6, and IL6R;

two dysfunctional T cell clusters by CD8A, LAG3, and PDCD1 expression; three transitional effector

T cell clusters by dysfunctional T cell marker gene andGZMK expression; two natural killer (NK) cell clusters

by CD3D, CD160, NCR3, CX3CR1, and FGFBP2 expression; one naive T cell cluster by SELL, TCF7, CCR7,

and LEF1 expression; and one regulatory T cell (Treg) cluster by FOXP3, IL2RA, TNFRSF4, TIGIT, andCTLA4

expression (Figures 5A-5D). Overall, the T cell subtypes were heterogeneously distributed across the indi-

vidual patients (Figure S5A). Most of the T cell clusters were identified from both primary tumors and MPEs

without significant differences in their enrichment level (Figure S5B) except for clusters 4 (Treg), 10 (helper

T cell), 12 (transitional T cell), and 16 (proliferating T cell).

Interestingly, among three transitional effector T cell clusters (clusters 2, 3, and 12), cluster 3 was significantly

enriched in the TKI-resistant group (p = 0.032, Wilcoxon rank-sum test) (Figures 5E and S5C), and the expres-

sion ofGZMK and FYNwas higher than that of the other clusters. FYN is known to phosphorylate the negative

regulator of T cell signaling and may be involved in terminating the TCR signal (Filby et al., 2007).

Heterogeneity of myeloid cells in pleural effusion samples

We identified nine macrophage clusters, one non-classical monocyte cluster, one myeloid precursor clus-

ter, one classical dendritic cell cluster, one activated dendritic cell cluster, and one plasmacytoid dendritic

cell (pDC) cluster (Figures 6A–6D). Similar to T cell subtypes, myeloid cell subtypes were also heteroge-

neously distributed across the individual patients (Figure S6A). Most of the myeloid cell clusters were iden-

tified from both primary tumors and MPEs without significant differences in their enrichment level, except

for clusters 0 (macrophage), 10 (activated dendritic cell), 13 (macrophage), and 14 (pDC) (Figure S6B).

Myeloid precursor and pDC clusters were enriched in the TKI-resistant group (Figures 6E and S6C). The

pDC cluster (cluster 14) with high granzyme B (GZMB) expression is known to induce regulatory T cell

response (Swiecki and Colonna, 2015) and to inhibit T cell proliferation (Jahrsdorfer et al., 2010). The

myeloid precursor cluster (cluster 11) had a high expression of genes associated with cell cycles such as

CCNB1, CCNB2, CDC20, and CDK1 (Engeland, 2018).

DISCUSSION

Most NSCLC patients with EGFR mutations are responsive to EGFR-TKI therapy, but approximately 10% of

patients show primary resistance to TKI (Lee et al., 2013; Sharma et al., 2007). Recent studies have

suggested that MPE is an appropriate model for investigating the heterogeneity and the immune micro-

environment of lung cancer because MPE preserves tumor, stromal, and immune cells (Basak et al.,
8 iScience 25, 105358, November 18, 2022
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Figure 5. Clustering of MPE-derived T cells in NSCLC patients

(A) Co-clustering of MPE-derived T cells from nine NSCLC patients and primary tissue-derived T cells was shown by t-SNE projection. The color of each dot

indicates a cluster.

(B) The T cells derived from the primary tissue, the resistant and sensitive groups are plotted in gray, red, and green, respectively.

(C) Heatmap for z-score-normalized expression profiles of known T cell subtype marker genes in each cluster.

(D) t-SNE plots showing expression of T cell subtype marker genes.

(E) Boxplot for the proportion of transitional T cells (cluster 3) in the resistant and sensitive groups (p = 0.032, Wilcoxon rank-sum test). MPE, malignant

pleural effusion; NSCLC, non–small-cell lung carcinoma; t-SNA, t-stochastic neighbor embedding.
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2009; Huang et al., 2021; Maynard et al., 2020), and its sampling is minimally invasive. Despite having these

advantages, most single-cell analyses of NSCLC have been based on tumors (Guo et al., 2018; Kim et al.,

2020; Lambrechts et al., 2018), and MPE has rarely been utilized. To the best of our knowledge, we are the

first to analyze the cellular landscapes potentially associated with EGFR-TKI response at the single-cell level

using MPEs of NSCLC patients with EGFR mutations.

We examined the expression of 22 genes known to be associated with EGFR-TKI response in epithelial cells

from MPE (Table S2). A drug response test was further conducted on the cell culture from the TKI-resistant

sample (LCPE.R4) with ERBB2 upregulation, and interestingly, it showed sensitivity to afatinib, a dual-tar-

geting drug of ERBB2 and EGFR (Figure 3D). Unfortunately, in actual clinical practice, the patient from

which the LCPE.R4 MPE cell culture was obtained did not receive afatinib treatment because there was

no such data at the time, and it is expected that if he had received the treatment, he would have benefited.

The major drug resistance factors can be divided into genetic mutagenicity and non-mutagenic mecha-

nisms. The non-mutagenic mechanism is mainly caused by cellular plasticity and is closely related to the

re-activation of developmental programs such as cancer stem cell characteristics and the epithelial-mesen-

chymal transition (Qin et al., 2020). Therefore, we examined the relationship between cellular plasticity and

TKI resistance through single-cell transcriptome analysis of MPEs from TKI-resistant and -sensitive patients

with EGFR mutations. Our results showed that precursor-like and suprabasal-like cells were enriched in the

resistant and sensitive groups, respectively. In the precursor-like cells, genes related to tumor cell prolifer-

ation (GNB2L1, CAV1, and ZFAS1) were generally upregulated. GNB2L1 is known to promote tumor cell

proliferation by regulating Src activity (Duff and Long, 2017; Peng et al., 2013). In addition, GNB2L1 and

Src regulate P-glycoprotein activity by caveolin-1 (CAV1) phosphorylation (Fan et al., 2019).

P-glycoprotein, a drug transporter in cancer cells, is one of themain causes of multidrug resistance because

it helps excrete anticancer drugs out of the cell (Fan et al., 2019). ZFAS1 induces tumor cell proliferation and

migration by directly binding with miR-1271-5p, which acts as a tumor suppressor in lung adenocarcinoma

(Fan et al., 2020). Maynard et al. analyzed advanced-stage NSCLC patients with EGFR mutations using a

scRNA-seq technique and demonstrated that residual tumor cells during therapy had enhanced alveolar

cell signatures, and tumor cells that acquired resistance reduced immunity (Maynard et al., 2020). Accord-

ing to them, CAV1 is upregulated in treatment-resistant tumor cells and transcriptionally activates the

WNT/b-catenin pathway. They also suggested that the activation of the WNT/b-catenin pathway in

NSCLC patients with EGFR mutations may lead to resistance to EGFR inhibitors (Maynard et al., 2020).

Although very few alveolar cells were identified in our results (Figure 3F), CAV1 was significantly upregu-

lated in the precursor-like cells that were abundant in the TKI-resistant group (Figures 3G and S2B), which

is concordant with the results from Maynard et al. The suprabasal-like cells, which accounted for a

high cellular proportion in the sensitive group, showed upregulation of KLF6, RHOB, HLA-DQB1, and

HLA-DRB5. The KLF family is known to be involved in cell differentiation, proliferation, and apoptosis (Black

et al., 2001). Among them, KLF6 is frequently downregulated in NSCLC and inhibits tumor cell growth by

inducing apoptosis (Ito et al., 2004). Reduction of RHOB expression often occurs in lung cancer and

enhances tumor suppressive activity (Mazieres et al., 2004). Taken together, both proliferative properties

and increased expression of drug transporter genes in precursor-like cells are associated with TKI

resistance.

We also found that some immune response-related genes are downregulated in the TKI-resistant group

(Figure 4B). In particular, the expression of HLA class II genes was significantly reduced in the epithelial cells

of the TKI-resistant group. In general, HLA class II is known to be expressed in professional antigen-pre-

senting cells (APCs), but recent studies have confirmed the expression of HLA class II from non-professional

APCs, including epithelial cells (Axelrod et al., 2019; Wosen et al., 2018). In the tumor microenvironment,

the MHC class II-mediated antigen presentation of epithelial cells appears to play an important role in
10 iScience 25, 105358, November 18, 2022
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Figure 6. Clustering of MPE-derived myeloid cells in NSCLC patients

(A) Co-clustering of MPE-derivedmyeloid cells from nine NSCLC patients and primary tissue-derivedmyeloid cells was shown by t-SNE projection. The color

of each dot indicates a cluster.

(B) The myeloid cells derived from the primary tissue, the resistant and sensitive groups are plotted in gray, red, and green, respectively.

(C) Heatmap for z-score-normalized expression profiles of known myeloid cell subtype marker genes in each cluster.

(D) t-SNE plots showing expression of myeloid cell subtype marker genes.

(E) Boxplot for the proportion of precursor myeloid cells and pDC in the resistant and sensitive groups (p = 0.032, Wilcoxon rank-sum test). MPE, malignant

pleural effusion; NSCLC, non–small-cell lung carcinoma; t-SNA, t-stochastic neighbor embedding; pDC, plasmacytoid dendritic cells.
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regulating the inflammatory response by activating T cells (Mehrfeld et al., 2018). MHC class II expression in

the epithelial cells was further confirmed by IHC staining, and notably, patients with high MHC class II

expression showed significantly superior EGFR-TKI therapy outcomes (Figures 4E-4G). Therefore, we

hypothesized that the difference in HLA class II expression was due to a specific transcription factor and

revealed that CIITA expression, an HLA class II transcription factor (Devaiah and Singer, 2013), was

significantly decreased in the TKI-resistant group. Furthermore, Pollack et al. (2011) reported that IFNG ac-

tivates CIITA expression and, subsequently, HLA class II expression. The resistant group exhibited

decreased expression of genes related to the IFNG signaling pathway, including JAK and STAT.

DEG analysis of epithelial cells revealed significant upregulation ofCSAG1 andMAGEA3 in the resistant group.

CT genes such as CSAG and MAGEA are known potential targets for immunotherapy because they are ex-

pressed in various malignant tumors, including lung cancer (Yao et al., 2014). Yao et al. investigated CT gene

expression in 10 common cancer types from TCGA and reported that MAGE and CSAG are activated in the

magnoid subtype of lung adenocarcinomas (Yao et al., 2014). Althoughmost of the EGFR-mutated lung adeno-

carcinomas are the bronchial subtype (Cancer Genome Atlas ResearchNetwork, 2014), our analysis showed that

some EGFR-TKI resistant patients could have magnoid subtype characteristics (Figure 4A).

Furthermore, transitional effector T cells were more enriched in the TKI-resistant group compared with the

sensitive group. Li et al. found that the dysfunction of CD8+ T cells is associated with tumor reactivity and

characterized transitional effector T cells in between early effector T cells and dysfunctional T cells (Li et al.,

2019). In our data, one transitional effector T cell cluster with a high expression of FYN, which activates

negative regulators of T cell signaling and is involved in terminating TCR signaling (Filby et al., 2007),

was enriched in the TKI-resistant group. We also confirmed that a pDC cluster was enriched in the TKI-resis-

tant group. pDC secretes soluble factors that play an important role in anti-tumor immunity, but inactivated

pDC is known to be associated with immunosuppression (Demoulin et al., 2013). Furthermore, the pDC

cluster (cluster 14) had a high GZMB expression, which induces regulatory T cell responses and inhibits

T cell proliferation (Jahrsdorfer et al., 2010; Swiecki and Colonna, 2015). In addition, a previous study re-

ported that an unstimulated pDC expressesGZMB and induces regulatory T cell responses (Ye et al., 2020).

Limitations of the study

We investigated EGFR-TKI resistancemechanisms inNSCLC using the limited number of MPE samples. In addi-

tion, EGFR-TKI resistantMPE specimens were collected after different types of EGFR-TKI treatments. Therefore,

thesemight influence our interpretation of the results. Furthermore, endothelial cells and fibroblasts, which were

not observed in our data, could also potentially affect EGFR-TKI responsiveness. Hence, it will be important in

the future to validate in an independent cohort with samples before and after treatment.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Recombinant Anti-HLA-DPB1 antibody

[EPR11226]

Abcam Cat# ab157210; RRID: AB_2827533

Recombinant Anti-HLA-DQA1 antibody

[EPR7300]

Abcam Cat# ab128959; RRID: AB_11145506

HLA-DRB1 antibody [N1C3] GeneTex Cat# GTX104919; RRID: AB_10616679

Cytokeratin Pan Antibody Cocktail Thermo Scientific Cat# MA5-13203; RRID: AB_10942225

Purified Mouse Anti-Human CD45 BD Bioscience Cat# 555480; RRID: AB_395872

Recombinant Anti-HLA-DR antibody [TAL 1B5] Abcam Cat# ab20181; RRID: AB_445401

Anti-CSAG1 antibody Abcam Cat# ab238872

CIITA Antibody Novus Biologicals Cat# NBP2-59072

MAGEA3 Monoclonal Antibody (OTI1G9) Thermo Scientific Cat# MA5-26486; RRID: AB_2724631

EpCAM Monoclonal Antibody (VU-1D9), FITC Thermo Scientific Cat# MA1-10197

BV421 Mouse Anti-Human CD3 BD Bioscience Cat# 563798

Alexa Fluor� 488 anti-human CD326 (EpCAM)

Antibody

BioLegend Cat# 324210; RRID: AB_756084

Alexa Fluor� 488 Mouse IgG2b, k Isotype Ctrl

Antibody

BioLegend Cat# 400329

Pan Cytokeratin Monoclonal Antibody (AE1/

AE3), Alexa Fluor� 488

eBioscience Cat# 53-9003-82; RRID: AB_1834350

Mouse IgG1 Alexa Fluor� 488-conjugated

Antibody

R&D System Cat# IC002G; RRID: AB_10718385

CD45 monoclonal Antibody(HI30)eFluor 450 eBioscience Cat# 48-0459-42; RRID: AB_2016677

Mouse IgG1 kappa Isotype control eFluor 450 eBioscience Cat# 48-4714-82; RRID: AB_1271992

PE anti-human IFN-g Antibody BioLegend Cat# 506507; RRID: AB_315440

PE Mouse IgG1, k Isotype Ctrl (ICFC) Antibody BioLegend Cat# 400140; RRID: AB_493443

APC Mouse Anti-Human CD45 BD Bioscience Cat# 560973; RRID: AB_10565969

HLA-DR Monoclonal Antibody (LN3), APC eBioscience Cat# 17-9956-42;RRID: AB_10670347

Mouse IgG2b kappa Isotype Control

(eBMG2b), APC

eBioscience Cat# 17-4732-81; RRID: AB_763656

Chemicals, peptides, and recombinant proteins

Human TruStain FcX� (Fc Receptor Blocking

Solution)

BioLegend Cat# 422302;RRID: AB_2818986

Stain Buffer (BSA) BD Bioscience Cat# 554657;RRID: AB_2869007

eBioscience� Intracellular Fixation &

Permeabilization Buffer Set

eBioscience Cat# 88-8824-00

Protein Transport Inhibitor BD Bioscience Cat# 554724;RRID: AB_2869012

Phorbol 12-myristate 13-acetate (PMA) Sigma-Aldrich Cat# P8139

Ionomycin calcium salt from Streptomyces

conglobatus

Sigma-Aldrich Cat# I0634

Deposited data

Single-cell RNA sequencing data Sequence Read Archive PRJNA668853

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

CellRanger 10x Genomics https://support.10xgenomics.com/single-cell-

gene-expression/software/downloads/

Scrublet GitHub https://github.com/AllonKleinLab/scrublet

Seurat GitHub https://github.com/satijalab/seurat

DESeq2 Bioconductor https://bioconductor.org/packages/DESeq2

EnrichR CRAN https://cran.r-project.org/web/packages/

enrichR/

inferCNV GitHub https://github.com/broadinstitute/inferCNV/

Prism GraphPad 7 GraphPad Software https://www.graphpad.com/scientific-

software/prism/

ggplot2 CRAN https://cran.r-project.org/web/packages/

ggplot2/

Pheatmap CRAN https://cran.r-project.org/web/packages/

pheatmap/

R project for statistical computing R Core Team https://www.r-project.org

Python Programming Language Python https://www.python.org

Source code This paper https://github.com/CompbioLabUnist/EGFR-

TKI-scRNAseq
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Se-Hoon Lee (shlee119@skku.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

Single-cell RNA-seq data have been deposited at Sequence Read Archive (SRA: PRJNA668853) and are

publicly available as of the date of publication. Accession numbers are listed in the key resources table.

Code is available from a github repository (https://github.com/CompbioLabUnist/EGFR-TKI-scRNAseq).

Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Collection and preparation of pleural effusion samples of NSCLC patients

Samples were collected after receiving consent and approval from the Institutional Review Board (IRB No.

2010-04-039 and IRB No. 2019-05-049) at Samsung Medical Center. The collected pleural effusions of

NSCLC patients were centrifuged at 1,500 rpm for 15 min, after which the samples were washed with

PBS. Thereafter, samples were digested using mixtures of collagenase type II (LS004174; Worthington

Biochemical Corporation, Lakewood, NJ, USA) plus deoxyribonuclease I (LS002139; Worthington

Biochemical Corporation) for 15 min at 37�C. Afterward, digested cells were passed through a 40-mm

pore filter and subjected to RBC lysis for 10 min at room temperature. After washing with PBS, cells on

the plate were incubated for 15 min in a CO2 incubator. Only floating cells on the plate were collected,

while adherent cells were excluded. The counted cells were then stocked and frozen. Except for one

surgical sample, eight samples were thawed for library preparation and sequenced using 10x Chromium

Single Cell Gene Expression Solution v2 (10x Genomics, Pleasanton, CA, USA) according to the manufac-

turer’s protocols. Six out of nine study patients were females, and additional clinical information for the

patients are provided in Table S1.
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METHOD DETAILS

scRNA-seq data processing

Sequencing results were demultiplexed and converted to the FASTQ format using Illumina bcl2fastq soft-

ware (Illumina, San Diego, CA, USA). The Cell Ranger Single-Cell Software Suite (https://support.10x

genomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-cell-ranger, version 3.0.2)

was used to perform sample demultiplexing, barcode processing, and single-cell 30 gene counting. The

cDNA insert was aligned to the hg19 reference genome. Only confidently mapped, non-PCR duplicates

with valid barcodes and unique molecular identifiers were used to generate the gene-barcode matrix.

We applied Scrublet (Wolock et al., 2019) to remove doublets that occur when two or more cells enter

the same microfluidic droplet. Further analysis, including quality filtering, identifying highly variable genes,

dimensionality reduction, standard unsupervised clustering algorithms, and the discovery of differentially

expressed genes (DE-Gs), was performed using the Seurat R package (version 3.1.4) (Butler et al., 2018). To

exclude low-quality cells, we used QC covariates such as counts per cell, number of genes per cell, and

mitochondrial gene ratio per cell. Because the distribution of these QC covariates differs for each sample

(Plasschaert et al., 2018), we determined different thresholds for each sample. After removing unwanted

cells from the dataset, we normalized the data by the total expression, multiplied by a scale factor of

10,000 using the ScaleData function. We used FindVariableFeatures to identify highly variable genes

and then performed PCA with the top 2,000 variable genes. Clusters were partitioned using

FindClusters, and each cell was projected into a two-dimensional space using t-Stochastic Neighbor

Embedding. DE-Gs in each cluster were calculated using the FindMarkers function. We integrated two

different scRNA-seq datasets using Seurat canonical correlation analysis alignment.

Correlation analysis of epithelial cells for infer cellular plasticity

To infer the cellular plasticity of epithelial cells, we performed a correlation analysis with previously re-

ported epithelial cell types (Deprez et al., 2020). We averaged the gene expression of cells of each cell

type, and then we analyzed the correlation between the gene expression values for each defined cell

type and the gene expression values of MPE-derived cells at the cellular level. Each cell was assigned

the cell type with the highest Pearson correlation coefficient, and cell types were restricted to the epithelial

cell type.

Differential gene expression analysis of pseudo-bulks

We combined all the cells from each sample to create pseudo-bulk samples. DE-Gs were identified using

the DESeq2 R package (version 1.26.0) (Love et al., 2014) based on the average expression level (mean

CPM) of each cell. Each DEG was filtered using abs (fold change) > 1 and p value < 0.05. We used EnrichR

(Chen et al., 2013) to analyze the enrichment of biological process ontology.

Copy number variation analysis in scRNA-seq

Copy number variation (CNV) in each cell was estimated using the inferCNV R package (version 1.2.1) (Patel

et al., 2014). Each CNV level was estimated using relative expression values with a sliding window of 100

genes based on the genomic location of the genes. All assays were analyzed using the default option,

and the CNV of epithelial cells was estimated with reference to myeloid cells.

Cell viability test

In the cell viability test, cells were equally distributed into 96-well plates with 7,000 cells/well. Thereafter,

cells were separately exposed to TKI drugs (gefitinib, erlotinib, osimertinib, and afatinib) in 1/4 and

seven-point serial dilution doses from 4 nM to 20 mM for 72 h. Subsequently, CellTiter-Glo Luminescent

Cell Viability Assay reagents (G7572; Promega, Madison, WI, USA) were added to each well at a 1:1 ratio

with media volume and shaken gently. The plates were incubated at room temperature for 15–30 min,

and cell viability was determined using a Mithras LB940 Multimode Microplate Reader (Berthold Technol-

ogies GmbH & Co. KG, Bad Wildbad, Germany) according to the manufacturer’s protocols.

Immunohistochemistry staining

FFPE tumor sections were dewaxed in xylene and ethanol and submerged into ER1 buffer (pH 6.0) for

20 min at 100�C in a Bond-RX Multiplex IHC Stainer (Leica Biosystem, Melbourne, Australia) to retrieve

the antigens, followed by incubation in endogenous peroxidase for 10 min. Anti-HLA-DPB1 antibody (Ab-

cam, Cambridge, UK) was diluted at 1:1,000 and incubated with Bond-RX autoimmunostainer for 15 min.
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For the HLA-DRB1 (IHC) test, we diluted the anti-HLA-DRB1 antibody (GeneTex, Irvine, CA, USA) to 1:2,000

and incubated it with Bond-RX autoimmunostainer for 15 min. For the HLA-DQA1 test, we diluted the anti-

HLA-DQA1 antibody (Abcam) to 1:200 and incubated it with Bond-RX autoimmunostainer for 15 min. Sub-

sequently, the immunostained slides were evaluated by an experienced pathologist. IHC scores were as-

sessed by both staining intensity and the percentage of positive tumor cells. The staining intensity was

graded from 0 to 3 (0, no staining; 1, weak staining; 2, moderate staining; and 3, strong staining) by relative

degree within each antibody. The percentage of positive staining cells was recorded from 0 to 100%. In

addition, we evaluated the quality of the IHC test depending on the staining of immune cells (internal

control).
Multiplex immunofluorescence

After fixing with 4% paraformaldehyde for 30 min, MPE cells were embedded with pre-warmed HistoGel

(Thermo Scientific, MI, USA) according to the manufacturer’s instructions by using cryomolds (Disposable

vinyl specimen molds 10 3 10 3 5 mm, Tissue-Tek, Sakura Finetek, Torrance, CA, USA). Followed by

placing on ice until the Histogel is solidified, cell block was wrapped with a filter paper and put into tissue

cassette for further fixation and routine tissue processing procedures of paraffin embedding. Prior to stain-

ing, all cell block slides were deparaffinized on the Leica BOND RX automated immunostainer (Leica Micro-

systems, Milton Keynes, UK) by baking for 30 min at 60�C, soaking in BOND Dewax Solution at 72�C and

then rehydrating in ethanol. Followed by heat-induced epitope retrieval (HIER) pretreatments applied at

95�C using citrate-based Epitope Retrieval (ER) Solution (pH 6.0, Leica Biosystems), the tyramide signal

amplification (TSA)-based Opal method was used for multiplex immunofluorescence (mIF) staining (Opal

Polaris 7-Color Automation IHC Kit; Akoya Biosciences, Marlborough, MA, USA). mIF was performed using

the following antibodies: anti-EpCAM (Thermo Scientific, #MA1-10195), anti-CD45 (BD Pharmingen,

#555480), anti-HLA-DR (Abcam, #ab20181), anti-MAGEA3 (Thermo Fisher Scientific, #MA5-26468), anti-

CIITA (Novus biological, #NBP2-59072) and anti-CSAG-1 (Abcam, #ab238872). The Opal fluorophores

were used to visualize each biomarker: Opal 690 (EpCAM), Opal 780 (HLA-DR), Opal 620 (CIITA), Opal

570 (CSAG1), Opal 520 (MAGEA3), and Opal 480 (CD45). Slides were incubated with DAPI as counterstain

and coverslipped with Prolong antifade mountant (Thermo Fisher Scientific). Whole slides were scanned

using the Vectra-Polaris 3.0.3, a multispectral imaging system (Akoya Biosciences), at a low magnification

of 103. And, quantification analysis and image capture were performed with In-Form 2.6.0. and Phenochart

1.0.9 image viewer software (Akoya Biosciences).
Flow cytometry

MPE cells were incubated with Human TruStain FcX� (Fc Receptor Blocking Solution, BioLegend) for

10 min at room temperature, and labeled for surface markers with EpCAM Monoclonal Antibody

(VU-1D9, Thermo Scientific), HLA-DR Monoclonal Antibody (LN3, eBioscience), BV421 Mouse Anti-

Human CD3 Antibody (SK7, BD Bioscience), and CD45 monoclonal Antibody (HI30, eBioscience). Then,

they were fixed and permeabilized by using eBioscience� Intracellular Fixation & Permeabilization Buffer

Set for intracellular staining with Pan Cytokeratin Monoclonal Antibody (AE1/AE3, eBioscience) and PE

anti-human IFN-g Antibody (B27, BioLegend). Stained cells were analyzed with BD FACSVerse� flow

cytometer and BD FACSuite� software (BD biosciences).
MPE-derived organoid culture

Collected pleural effusion from T EGFR-TKI sensitive or EGFR-TKI resistant patients was centrifuged at

1500g for 15 min and the pellet was incubated with enzyme mixture containing collagenase II (5 mg/

mL, Worthington) and DNase I (1.7 mg/mL, Worthington) for 10 min at 37�C. After washing with phos-

phate buffered saline, cells were filtered with 40 mm cell strainer and red blood cells were lysed for

10 min at room temperature. Washed cells were suspended in ACL4 medium (Hyclone) containing

EGF (10 ng/mL, PeproTech), FGF (10 ng/mL, PeproTech), IGF (20 ng/mL, PeproTech), A83-01 (5 mM,

Sigma), 2.5% heat-inactivated fetal bovine serum (Gibco) and 1x Antibiotic-Antimycotic (Gibco). Counted

MPE cells (0.5-1x106/100 mL media) were mixed with matrigel (Corning) in a 1:1 ratio, plated and incu-

bated at 37�C for several days with media change every 3–4 days. MPE organoids were collected by

removing matrigel with cell recovery solution (Corning), and lysed for western blot to examine the

expression of HLA class II.
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Analysis of clinical validation cohort

Progression-free survival (PFS) was calculated from the date of TKI treatment to the date of disease pro-

gression or death, and the hazard ratio (HR) was computed using a log rank of survival calculations. The

patient group was classified as TKI resistant if disease progression occurred within 90 days and TKI sensitive

if TKI treatment continued for more than 180 days. Cases where the IHC score is greater than the median

value were defined as High, and those where the IHC score was less than the median value were defined as

Low, and Kaplan–Meier calculations were performed. Non-parametric Non-parametric data and IHC score

were analyzed using the Wilcoxon rank-sum test. R software and GraphPad Prism Ver8.0 were used for the

analysis, and statistical significance was considered at p < 0.05.
QUANTIFICATION AND STATISTICAL ANALYSIS

For all statistical test to comparing the difference in the proportion of cell types between the two groups,

wilcoxon rank-sum test was used to evaluate the p value. Statistical analysis was implemented using R and

the statistical details of analysis can be found in the results and figures legends.
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