48 research outputs found

    Ginseng glycoprotein and ginsenoside facilitate anti UV damage effects in diabetic rats

    Get PDF
    Diabetes mellitus combined with ultraviolet (UV) radiation damage not only brings great mental stress to patients, but also seriously impairs their quality of life. A UV-irradiated diabetic rat trauma skin model was established by us to investigate the effects and possible mechanisms of ginsenoside and glycoprotein on skin trauma repair in UV-irradiated diabetic rats. In the study, ginsenosides and ginseng glycoproteins were extracted from different parts of ginseng roots. It found that it’s easier to prepare saponins in ginseng bark and proteins in ginseng core in large quantities. Since glycoprotein-like metabolites are relatively novel ginseng extracts, specifically characterized its structures. It was verified that the ginseng glycoproteins are not toxic to HaCaT cells and can significantly increase the survival of HaCaT cells after UV damage at the in vitro cellular level. Experiments in vivo were conducted to evaluate the therapeutic effects of ginsenoside and ginseng glycoprotein in a rat model of diabetes mellitus combined with UV irradiation injury. Histopathological changes on rat skin after treatment with ginsenoside and ginseng glycoprotein were evaluated by hematoxylin and eosin (H&E) staining and aldehyde fuchsine staining. The expression levels of malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), matrix metalloproteinases (MMPs), hydroxyproline (HYP), interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) were measured. The results indicate that both ginsenoside and ginseng glycoprotein could improve skin damage and ulcers caused by diabetes combined with UV irradiation and could alleviate a range of skin damage caused by the combination of diabetes and UV irradiation, including peroxidation and collagen fiber loss. Ginsenoside and ginseng glycoproteins can be considered as natural product candidates for the development of new drugs to treat diabetes combined with UV irradiation-induced skin damage

    Large animal models in the study of gynecological diseases

    Get PDF
    Gynecological diseases are a series of diseases caused by abnormalities in the female reproductive organs or breast, which endanger women’s fertility and even their lives. Therefore, it is important to investigate the mechanism of occurrence and treatment of gynecological diseases. Animal models are the main objects for people to study the development of diseases and explore treatment options. Large animals, compared to small rodents, have reproductive organs with structural and physiological characteristics closer to those of humans, and are also better suited for long-term serial examinations for gynecological disease studies. This review gives examples of large animal models in gynecological diseases and provides a reference for the selection of animal models for gynecological diseases

    The Retrospective Analysis of Posterior Short-Segment Pedicle Instrumentation without Fusion for Thoracolumbar Burst Fracture with Neurological Deficit

    Get PDF
    This study aims to investigate the efficacy of posterior short-segment pedicle instrumentation without fusion in curing thoracolumbar burst fracture. All of the 53 patients were treated with short-segment pedicle instrumentation and laminectomy without fusion, and the restoration of retropulsed bone fragments was conducted by a novel custom-designed repositor (RRBF). The mean operation time and blood loss during surgery were analyzed; the radiological index and neurological status were compared before and after the operation. The mean operation time was 93 min (range: 62–110 min) and the mean intraoperative blood loss was 452 mL in all cases. The average canal encroachment was 50.04% and 10.92% prior to the surgery and at last followup, respectively (P<0.01). The preoperative kyphotic angle was 17.2 degree (±6.87 degrees), whereas it decreased to 8.42 degree (±4.99 degrees) at last followup (P<0.01). Besides, the mean vertebral body height increased from 40.15% (±9.40%) before surgery to 72.34% (±12.32%) at last followup (P<0.01). 45 patients showed 1-2 grades improvement in Frankel’s scale at last followup. This technique allows for satisfactory canal clearance and restoration of vertebral body height and kyphotic angle, and it may promote the recovery of neurological function. However, further research is still necessary to confirm the efficacy of this treatment

    Polynomial-time algorithms for computing distances of Fuzzy Transition Systems

    Get PDF
    Behaviour distances to measure the resemblance of two states in a (nondeterministic) fuzzy transition system have been proposed recently in literature. Such a distance, defined as a pseudo-ultrametric over the state space of the model, provides a quantitative analogue of bisimilarity. In this paper, we focus on the problem of computing these distances. We first extend the definition of the pseudo-ultrametric by introducing discount such that the discounting factor being equal to 1 captures the original definition. We then provide polynomial-time algorithms to calculate the behavioural distances, in both the non-discounted and the discounted setting. The algorithm is strongly polynomial in the former case

    Interferon-Inducible Cholesterol-25-Hydroxylase Inhibits Hepatitis C Virus Replication via Distinct Mechanisms

    Get PDF
    Cholesterol 25-hydroxylase (CH25H) as an interferon-stimulated gene (ISG) has recently been shown to exert broad antiviral activity through the production of 25-hydroxycholesterol (25HC), which is believed to inhibit the virus-cell membrane fusion during viral entry. However, little is known about the function of CH25H on HCV infection and replication and whether antiviral function of CH25H is exclusively mediated by 25HC. In the present study, we have found that although 25HC produced by CH25H can inhibit HCV replication, CH25H mutants lacking the hydroxylase activity still carry the antiviral activity against HCV but not other viruses such as MHV-68. Further studies have revealed that CH25H can interact with the NS5A protein of HCV and inhibit its dimer formation, which is essential for HCV replication. Thus, our work has uncovered a novel mechanism by which CH25H restricts HCV replication, suggesting that CH25H inhibits viral infection through both 25HC-dependent and independent events

    The Genomes of Oryza sativa: A History of Duplications

    Get PDF
    We report improved whole-genome shotgun sequences for the genomes of indica and japonica rice, both with multimegabase contiguity, or almost 1,000-fold improvement over the drafts of 2002. Tested against a nonredundant collection of 19,079 full-length cDNAs, 97.7% of the genes are aligned, without fragmentation, to the mapped super-scaffolds of one or the other genome. We introduce a gene identification procedure for plants that does not rely on similarity to known genes to remove erroneous predictions resulting from transposable elements. Using the available EST data to adjust for residual errors in the predictions, the estimated gene count is at least 38,000–40,000. Only 2%–3% of the genes are unique to any one subspecies, comparable to the amount of sequence that might still be missing. Despite this lack of variation in gene content, there is enormous variation in the intergenic regions. At least a quarter of the two sequences could not be aligned, and where they could be aligned, single nucleotide polymorphism (SNP) rates varied from as little as 3.0 SNP/kb in the coding regions to 27.6 SNP/kb in the transposable elements. A more inclusive new approach for analyzing duplication history is introduced here. It reveals an ancient whole-genome duplication, a recent segmental duplication on Chromosomes 11 and 12, and massive ongoing individual gene duplications. We find 18 distinct pairs of duplicated segments that cover 65.7% of the genome; 17 of these pairs date back to a common time before the divergence of the grasses. More important, ongoing individual gene duplications provide a never-ending source of raw material for gene genesis and are major contributors to the differences between members of the grass family

    A Comprehensive Survey of Optical Remote Sensing Image Segmentation Methods

    No full text
    Many papers have reviewed remote sensing image segmentation (RSIS) algorithms currently. Those existing surveys are insufficiently exhaustive to sort out the various RSIS methods, it is impossible to comprehensively compare characteristics of different RSIS methods. In addition, the segmentation efficiency and accuracy of the RSIS methods cannot always meet the subsequent image analysis requirements. Thus, a clear comparative analysis of various RSIS methods is essential to provide an in-depth understanding of RSIS and theoretical ideas for conducting in-depth research in the future. The goal of this article is to provide readers with the latest information on optical RSIS technology. Comparative measures of these methods are provided in terms of conceptual details, the merits and demerits, and the performance of various RSIS methods. Moreover, various RSIS methods’ experiments are carried out on optical images using the NWPU VHR-10 public remote sensing datasets. Through the review of optical RSIS methods, this paper provides data as complete as possible for further related research and development of RSIS methods
    corecore