519 research outputs found

    Lyapunov-type inequalities for quasilinear systems with antiperiodic boundary conditions

    No full text
    We establish some new Lyapunov-type inequalities for one-dimensional p-Laplacian systems with antiperiodic boundary conditions. The lower bounds of eigenvalues are presented.Встановлено дєякі нові нєрівності типу Ляпунова для одновимірних p-лапласових систем з антиперіодичними граничними умовами. Наведено нижні межі для власних значень

    Accelerated discovery of molecular nanojunction photocatalysts for hydrogen evolution by using automated screening and flow synthesis

    Get PDF
    Discovering and optimizing multicomponent organic semiconductors is typically a laborious process. High-throughput experimentation can accelerate this, but the results of small-scale screening trials are not always transferable to bulk materials production. Here we report the accelerated discovery of molecular nanojunction photocatalysts based on a combinatorial donor–acceptor molecular library assisted by high-throughput automated screening. The knowledge gained from this high-throughput batch screening is then transferred to a scaled-up, flow-based synthesis process. The scaled-up molecular nanojunction MTPA-CA:CNP147 (3-(4-(bis(4-methoxyphenyl)amino)phenyl)-2-cyanoacrylic acid:2,6-bis(4-cyanophenyl)-4-(4′-fluoro-[1,1′-biphenyl]-4-yl)pyridine-3,5-dicarbonitrile) exhibits a sacrificial hydrogen evolution rate of 330.3 mmol h−1 g−1 with an external quantum efficiency of 80.3% at 350 nm, which are among the highest reported for an organic photocatalyst. A one-dimensional nanofibre architecture is identified for this molecular nanojunction, which exhibits efficient charge separation. Electronic structure–property correlations across the photocatalyst library show that a moderate binding energy between the donor and the acceptor molecules is a potential factor for efficient molecular nanojunction formation

    Surface Morphology Evolution Mechanisms of InGaN/GaN Multiple Quantum Wells with Mixture N2/H2-Grown GaN Barrier

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.Surface morphology evolution mechanisms of InGaN/GaN multiple quantum wells (MQWs) during GaN barrier growth with different hydrogen (H2) percentages have been systematically studied. Ga surface-diffusion rate, stress relaxation, and H2 etching effect are found to be the main affecting factors of the surface evolution. As the percentage of H2 increases from 0 to 6.25%, Ga surface-diffusion rate and the etch effect are gradually enhanced, which is beneficial to obtaining a smooth surface with low pits density. As the H2 proportion further increases, stress relaxation and H2 over- etching effect begin to be the dominant factors, which degrade surface quality. Furthermore, the effects of surface evolution on the interface and optical properties of InGaN/GaN MQWs are also profoundly discussed. The comprehensive study on the surface evolution mechanisms herein provides both technical and theoretical support for the fabrication of high-quality InGaN/GaN heterostructures.Peer reviewe

    Reconstructed covalent organic frameworks

    Get PDF
    Covalent organic frameworks (COFs) are distinguished from other organic polymers by their crystallinity1–3, but it remains challenging to obtain robust, highly crystalline COFs because the framework-forming reactions are poorly reversible4,5. More reversible chemistry can improve crystallinity6–9, but this typically yields COFs with poor physicochemical stability and limited application scope5. Here we report a general and scalable protocol to prepare robust, highly crystalline imine COFs, based on an unexpected framework reconstruction. In contrast to standard approaches in which monomers are initially randomly aligned, our method involves the pre-organization of monomers using a reversible and removable covalent tether, followed by confined polymerization. This reconstruction route produces reconstructed COFs with greatly enhanced crystallinity and much higher porosity by means of a simple vacuum-free synthetic procedure. The increased crystallinity in the reconstructed COFs improves charge carrier transport, leading to sacrificial photocatalytic hydrogen evolution rates of up to 27.98 mmol h−1 g−1. This nanoconfinement-assisted reconstruction strategy is a step towards programming function in organic materials through atomistic structural control

    Study of Inconel 718 Welded by Bead-On-Plate Laser Welding under High-Frequency Micro-Vibration Condition

    No full text
    Inconel 718 alloy laser-welded joints have poor mechanical properties due to the presence of Laves phases and liquation cracks. This paper intends to solve the above problems by high-frequency micro-vibration-coupled bead-on-plate laser welding. According to the shape of the weld beam, the upper part of the weld is defined as the nail head, and the lower part is the nail body. The results showed that high-frequency micro-vibration can achieve grain refinement. The micro-vibration could break the primary dendrite arm to form secondary dendrite and reduce epitaxial growth of the cellular crystal region. Micro-vibration exacerbated the flow of Niobium (Nb) elements surrounded by dendrites and reduced dendritic segregation, which decreased the formation of Laves phases. The combination of interdendritic Nickel (Ni), Titanium (Ti), and Nb and the precipitation of strengthening phases γ′ and γ″ were promoted. When the vibration acceleration was 50.10 m/s2, it could inhibit the formation of Laves phases among dendrites and the size of the bulk Laves phase was effectively reduced. The cracks generated in the Inconel 718 alloy were distributed at three locations including the nail-head, the nail-body, and the junction of nail-head and nail-body. When the vibration frequency was 919 Hz, the length of the liquation crack reduced from 180 to 110 μm. While under 1331 Hz, the expansion of the liquation crack was extended, with the length of 200 μm

    Non-uniform effect on the thermal/aging performance of Lithium-ion pouch battery

    No full text
    Non-uniform distribution of current density and temperature is inevitable especially in high C-rate and it can lead to bad performance of battery. Therefore, the non-uniform effect (non-uniform temperature, current density and aging) on the pouch battery performance is studied with experiment and simulation. A new method, which measures the direct current resistance (DCR) based on the discharge curve, is proposed to get more detail of resistance variation. The measurement shows that the resistance of Lithium ion pouch battery with non-uniform temperature is similar to that of average temperature. Then, effect of non-uniform aging is simulated based on the electro-thermal coupled model. It is found that battery suffering non-uniform aging has smaller discharging capacity relatively. The main cause for the discharge capacity reduction between the uniform and non-uniform aging battery is the big difference of local stoichiometry of cathode electrode theta(LiFePO4). The capacity reduction in 1 C rate occupies about 6% of the permissible capacity loss. Finally, tabs of battery are changed in order to acquire uniform temperature distribution. Battery whose tabs are put on the middle of the top side and the bottom side has a better performance in the opinion of thermal analysis. (C) 2017 Elsevier Ltd. All rights reserved
    corecore