41 research outputs found
Transcriptome and Physiological Analyses for Revealing Genes Involved in Wheat Response to Endoplasmic Reticulum Stress.
BACKGROUND: Wheat production is largely restricted by adverse environmental stresses. Under many undesirable conditions, endoplasmic reticulum (ER) stress can be induced. However, the physiological and molecular responses of wheat to ER stress remain poorly understood. We used dithiothreitol (DTT) and tauroursodeoxycholic acid (TUDCA) to induce or suppress ER stress in wheat cells, respectively, with the aim to reveal the molecular background of ER stress responses using a combined approach of transcriptional profiling and morpho-physiological characterization.
METHODS: To understand the mechanism of wheat response to ER stress, three wheat cultivars were used in our pre-experiments. Among them, the cultivar with a moderate stress tolerance, Yunong211 was used in the following experiments. We used DTT (7.5 mM) to induce ER stress and TUDCA (25 μg·mL
RESULTS: Morpho-physiological results showed DTT significantly reduced plant height and biomass, decreased contents of chlorophyll and water, increased electrolyte leakage rate and antioxidant enzymes activity, and accelerated the cell death ratio, whereas these changes were all remarkably alleviated after TUDCA co-treatment. Therefore, RNA sequencing was performed to determine the genes involved in regulating wheat response to stress. Transcriptomic analysis revealed that 8204 genes were differentially expressed in three treatment groups. Among these genes, 158 photosynthesis-related genes, 42 antioxidant enzyme genes, 318 plant hormone-related genes and 457 transcription factors (TFs) may play vital roles in regulating wheat response to ER stress. Based on the comprehensive analysis, we propose a hypothetical model to elucidate possible mechanisms of how plants adapt to environmental stresses.
CONCLUSIONS: We identified several important genes that may play vital roles in wheat responding to ER stress. This work should lay the foundations of future studies in plant response to environmental stresses
Different responses of soil element contents and their stoichiometry (C: N: P) to different grazing intensity on the Tibetan Plateau shrublands
Potentilla fruticosa, a major alpine shrubland type, is widely distributed across the Tibetan Plateau, and grazing is the most common disturbance in the shrublands of P. fruticosa. However, soil organic carbon (SOC), soil total nitrogen (STN), soil total phosphorus (STP), and their stoichiometry under different grazing intensities were unclear. In our study, we explored SOC, STN, STP, their stoichiometry, and their controlling factors in the grazing disturbance of heavy grazing (HG), moderate grazing (MG), light grazing (LG), and no grazing (NG) conditions in the Tibetan Plateau P. fruticosa shrublands. The grazing intensities were mainly assessed by considering the shrublands’ ground cover, the indicators of the road density, the distance between sampling sites and cowshed or sheep shed, the amounts of cow and sheep dung, and vegetation that had been gnawed and stampeded. Our results indicated that soil physical properties of soil temperature and bulk density have decreasing trends with decreasing grazing intensities from HG to NG. The SOC, STN, STP, and soil C:N and C:P ratios have increasing trends with decreasing grazing intensities from HG to NG, while the changes in soil N:P ratio were relatively stable along grazing intensities. Our results indicated that HG generally had stronger effects on SOC, STN, and soil C:N and C:P ratios than NG, indicating substantial effects of grazing disturbance on biogeochemical cycles of SOC and STN in the shrubland ecosystems. Therefore, for the alpine shrubland of P. fruticosa, the HG should be avoided for sustainable cycling of soil nutrients and the balance of soil nutrient stoichiometry. The grazing types can directly affect plant conditions, and plant conditions can directly affect soil physical and chemical properties and litter standing crops. Finally, soil physicochemical properties and litter standing crop resulting from different grazing intensities directly control SOC, STN, and STP. For the soil stoichiometry, the soil’s physical and chemical properties resulting from different grazing intensities have direct impacts on soil C:P and N:P ratios
Osmotic Stress Induced Cell Death in Wheat Is Alleviated by Tauroursodeoxycholic Acid and Involves Endoplasmic Reticulum Stress–Related Gene Expression
Although, tauroursodeoxycholic acid (TUDCA) has been widely studied in mammalian cells because of its role in inhibiting apoptosis, its effects on plants remain almost unknown, especially in the case of crops such as wheat. In this study, we conducted a series of experiments to explore the effects and mechanisms of action of TUDCA on wheat growth and cell death induced by osmotic stress. Our results show that TUDCA: (1) ameliorates the impact of osmotic stress on wheat height, fresh weight, and water content; (2) alleviates the decrease in chlorophyll content as well as membrane damage caused by osmotic stress; (3) decreases the accumulation of reactive oxygen species (ROS) by increasing the activity of antioxidant enzymes under osmotic stress; and (4) to some extent alleviates osmotic stress–induced cell death probably by regulating endoplasmic reticulum (ER) stress–related gene expression, for example expression of the basic leucine zipper genes bZIP60B and bZIP60D, the binding proteins BiP1 and BiP2, the protein disulfide isomerase PDIL8-1, and the glucose-regulated protein GRP94. We also propose a model that illustrates how TUDCA alleviates osmotic stress–related wheat cell death, which provides an important theoretical basis for improving plant stress adaptation and elucidates the mechanisms of ER stress–related plant osmotic stress resistance
Comparative Proteomic Analysis Provides New Insights Into Low Nitrogen-Promoted Primary Root Growth in Hexaploid Wheat
Nitrogen deficient environments can promote wheat primary root growth (PRG) that allows for nitrogen uptake in deep soil. However, the mechanisms of low nitrogen-promoted root growth remain largely unknown. Here, an integrated comparative proteome study using iTRAQ analysis on the roots of two wheat varieties and their descendants with contrasting response to low nitrogen (LN) stress was performed under control (CK) and LN conditions. In total, 84 differentially abundant proteins (DAPs) specifically involved in the process of LN-promoted PRG were identified and 11 pathways were significantly enriched. The Glutathione metabolism, endocytosis, lipid metabolism, and phenylpropanoid biosynthesis pathways may play crucial roles in the regulation of LN-promoted PRG. We also identified 59 DAPs involved in the common response to LN stress in different genetic backgrounds. The common responsive DAPs to LN stress were mainly involved in nitrogen uptake, transportation and remobilization, and LN stress tolerance. Taken together, our results provide new insights into the metabolic and molecular changes taking place in contrasting varieties under LN conditions, which provide useful information for the genetic improvement of root traits and nitrogen use efficiency in wheat
Hepatitis C Virus Protects Human B Lymphocytes from Fas-Mediated Apoptosis via E2-CD81 Engagement
HCV infection is often associated with B-cell regulatory control disturbance and delayed appearance of neutralizing antibodies. CD81 is a cellular receptor for HCV and can bind to HCV envelope protein 2 (E2). CD81 also participates to form a B cell costimulatory complex. To investigate whether HCV influences B cell activation and immune function through E2 -CD81 engagement, here, human Burkitt's lymphoma cell line Raji cells and primary human B lymphocytes (PHB) were treated with HCV E2 protein and cell culture produced HCV particles (HCVcc), and then the related cell phenotypes were assayed. The results showed that both E2 and HCVcc triggered phosphorylation of IκBα, enhanced the expression of anti-apoptosis Bcl-2 family proteins, and protected Raji cells and PHB cells from Fas-mediated death. In addition, both E2 protein and HCVcc increased the expression of costimulatory molecules CD80, CD86 and CD81 itself, and decreased the expression of complement receptor CD21. The effects were dependent on E2-CD81 interaction on the cell surface, since CD81-silenced Raji cells did not respond to both treatments; and an E2 mutant that lose the CD81 binding activity, could not trigger the responses of both Raji cells and PHB cells. The effects were not associated with HCV replication in cells, for HCV pseudoparticle (HCVpp) and HCVcc failed to infect Raji cells. Hence, E2-CD81 engagement may contribute to HCV-associated B cell lymphoproliferative disorders and insufficient neutralizing antibody production
Identification and characterization of CircRNAs involved in the regulation of wheat root length
Abstract Background Recent studies indicate that circular RNAs (circRNAs) may play important roles in the regulation of plant growth and development. Plant roots are the main organs of nutrient and water uptake. However, whether circRNAs involved in the regulation of plant root growth remains to be elucidated. Methods LH9, XN979 and YN29 are three Chinese wheat varieties with contrasting root lengths. Here, the root circRNA expression profiles of LH9, XN979 and YN29 were examined by using high-throughput sequencing technology. Results Thirty-three and twenty-two differentially expressed circRNAs (DECs) were identified in the YN29-LH9 comparison and YN29-XN979 comparison, respectively. Among them, ten DECs coexisted in both comparisons. As the roots of both LH9 and XN979 were significantly larger and deeper than YN29, the ten DECs coexisting in the two comparisons were highly likely to be involved in the regulation of wheat root length. Moreover, three of the ten DECs have potential miRNA binding sites. Real-time PCR analysis showed that the expression levels of the potential binding miRNAs exhibited significant differences between the long root plants and the short root plants. Conclusions The expression levels of some circRNAs exhibited significant differences in wheat varieties with contrasting root phenotypes. Ten DECs involved in the regulation of wheat root length were successfully identified in which three of them have potential miRNAs binding sites. The expression levels of putative circRNA-binding miRNAs were correlated with their corresponding circRNAs. Our results provide new clues for studying the potential roles of circRNAs in the regulation of wheat root length
QTL Mapping for Root Traits and Their Effects on Nutrient Uptake and Yield Performance in Common Wheat (<i>Triticum aestivum</i> L.)
Wheat is one of the most important crops in the world. Mapping QTLs for root traits is essential for the selection of wheat roots desirable for the efficient acquisition of nutrients. Here, a QTL analysis for wheat root traits was performed using 142 recombinant inbred lines derived from two wheat varieties Xiaoyan 54 and Jing 411 in a soil column culture trial. The genetic map used in this study contained 470 SSR markers and covered 3438.4 cM of wheat genome. A total of 25 QTLs for root and shoot traits were detected, located at 16 marker intervals of 13 chromosomes. The percentage of phenotypic variation explained by individual QTLs varied from 6.1% to 22.0%. The QTLs regulating RDW and root distribution on chromosomes 1A, 3A, 4A, and 5B are important for root growth in both the top- and subsoils. For qRDW-1A, qRDW-3A, and qRDW-5B, the nearest markers to the QTLs were much closer than that of qRDW-4A, with the genetic distances ranging from 0.01 to 1.18 cM. Combining these three QTLs not only increased RDW and nutrient uptake, but also increased GW, SDW, and BDW under low nitrogen conditions in the field trial. Therefore, these QTLs are valuable for marker-assisted selection of wheat root traits
Identification and characterization of circRNAs involved in the regulation of low nitrogen-promoted root growth in hexaploid wheat
Abstract Background CircRNAs are widespread in plants and play important roles in response to abiotic stresses. Low nitrogen (LN) promotes the growth of plant root system, allowing it to explore more nitrogen. However, whether circRNAs involved in the response to LN stress and the regulation of LN-promoted root growth in wheat remains unclear. Methods Two wheat varieties (LH9 and XN979) with contrasting root phenotypes to LN stress were used as materials to identify circRNAs under control and LN conditions by using high-throughput sequencing technology. Results Six differentially expressed circRNAs (DECs) involved in the common response to LN stress and 23 DECs involved in the regulation of LN-promoted root growth were successfully identified. GO analysis of the DEC-host genes involved in the regulation of LN-promoted root growth showed that GO terms related to biological regulation, responses to stimuli and signalling were significantly enriched. Moreover, seven DECs were predicted to have miRNA binding sites and may serve as miRNA sponges to capture miRNAs from their target genes. Conclusions LN stress altered the expression profiles of circRNAs in wheat. This is the first report of LN stress responsive circRNAs in plants. Our results provided new clues for investigating the functions of circRNAs in response to LN stress and in the regulation of LN-promoted wheat root growth
Identification of Two Novel Wheat Drought Tolerance-Related Proteins by Comparative Proteomic Analysis Combined with Virus-Induced Gene Silencing
Drought is a major adversity that limits crop yields. Further exploration of wheat drought tolerance-related genes is critical for the genetic improvement of drought tolerance in this crop. Here, comparative proteomic analysis of two wheat varieties, XN979 and LA379, with contrasting drought tolerance was conducted to screen for drought tolerance-related proteins/genes. Virus-induced gene silencing (VIGS) technology was used to verify the functions of candidate proteins. A total of 335 differentially abundant proteins (DAPs) were exclusively identified in the drought-tolerant variety XN979. Most DAPs were mainly involved in photosynthesis, carbon fixation, glyoxylate and dicarboxylate metabolism, and several other pathways. Two DAPs (W5DYH0 and W5ERN8), dubbed TaDrSR1 and TaDrSR2, respectively, were selected for further functional analysis using VIGS. The relative electrolyte leakage rate and malonaldehyde content increased significantly, while the relative water content and proline content significantly decreased in the TaDrSR1- and TaDrSR2-knock-down plants compared to that in non-knocked-down plants under drought stress conditions. TaDrSR1- and TaDrSR2-knock-down plants exhibited more severe drooping and wilting phenotypes than non-knocked-down plants under drought stress conditions, suggesting that the former were more sensitive to drought stress. These results indicate that TaDrSR1 and TaDrSR2 potentially play vital roles in conferring drought tolerance in common wheat
A Knowledge-Guided Fusion Visualisation Method of Digital Twin Scenes for Mountain Highways
Informatization is an important trend in the field of mountain highway management, and the digital twin is an effective way to promote mountain highway information management due to the complex and diverse terrain of mountainous areas, the high complexity of mountainous road scene modeling and low visualisation efficiency. It is challenging to construct the digital twin scenarios efficiently for mountain highways. To solve this problem, this article proposes a knowledge-guided fusion expression method for digital twin scenes of mountain highways. First, we explore the expression features and interrelationships of mountain highway scenes to establish the knowledge graph of mountain highway scenes. Second, by utilizing scene knowledge to construct spatial semantic constraint rules, we achieve efficient fusion modeling of basic geographic scenes and dynamic and static ancillary facilities, thereby reducing the complexity of scene modeling. Finally, a multi-level visualisation publishing scheme is established to improve the efficiency of scene visualisation. On this basis, a prototype system is developed, and case experimental analysis is conducted to validate the research. The results of the experiment indicate that the suggested method can accomplish the fusion modelling of mountain highway scenes through knowledge guidance and semantic constraints. Moreover, the construction time for the model fusion is less than 5.7 ms; meanwhile, the dynamic drawing efficiency of the scene is maintained above 60 FPS. Thus, the construction of twinned scenes can be achieved quickly and efficiently, the effect of replicating reality with virtuality is accomplished, and the informatisation management capacity of mountain highways is enhanced