282 research outputs found

    Study of Reliability of Substation for Coal Mine Supervision System

    Get PDF
    AbstractThe sub-station has direct impact on the reliability of coal mine safety monitoring system reliability. The mine sub-station reliability of expected value and accelerated life test of the reliability value is given by setting the number of tests Censored Bayesian methods and Fixed Number Truncated of constant-stress accelerated methods on sub-station reliability research, and a sub-station with the voltage changes in the average life expectancy curves is simulationed. Through research we can see that the two methods to verify the reliability of the results of similar, and thus proved the scientific nature of the two methods

    Systemic similarity analysis of compatibility drug-induced multiple pathway patterns _in vivo_

    Get PDF
    A major challenge in post-genomic research is to understand how physiological and pathological phenotypes arise from the networks of expressed genes and to develop powerful tools for translating the information exchanged between gene and the organ system networks. Although different expression modules may contribute independently to different phenotypes, it is difficult to interpret microarray experimental results at the level of single gene associations. The global effects and response pathways of small molecules in cells have been investigated, but the quantitative details of the activation mechanisms of multiple pathways _in vivo_ are not well understood. Similar response networks indicate similar modes of action, and gene networks may appear to be similar despite differences in the behaviour of individual gene groups. Here we establish the method for assessing global effect spectra of the complex signaling forms using Global Similarity Index (GSI) in cosines vector included angle. Our approach provides quantitative multidimensional measures of genes expression profile based on drug-dependent phenotypic alteration _in vivo_. These results make a starting point for identifying relationships between GSI at the molecular level and a step toward phenotypic outcomes at a system level to predict action of unknown compounds and any combination therapy

    Herbal therapy: a new pathway for the treatment of Alzheimer's disease

    Get PDF
    It has been a clinical challenge to treat Alzheimer's disease (AD). In the present commentary we discuss whether herbal therapy could be a novel treatment method for AD on the basis of results from clinical trials, and discuss the implications for potential therapy for AD pathophysiology. There is evidence to suggest that single herbs or herbal formulations may offer certain complementary cognitive benefits to the approved drugs. The current evidence supporting their use alone, however, is inconclusive or inadequate owing to many methodological limitations. Herbal mixtures may have advantages with multiple target regulation compared with the single-target antagonist in the view of traditional Chinese medicine. Several clinical trials using herbal mixtures are being conducted in China and will hopefully show promising results for treating AD in the near future

    The \u3ci\u3eAPOA5\u3c/i\u3e rs662799 polymorphism is associated with dyslipidemia and the severity of coronary heart disease in Chinese women

    Get PDF
    Background: The APOA5 rs662799 polymorphism has been widely reported regarding its associations with the plasma lipid levels and the occurrence of coronary heart disease (CHD), whereas its relationship with the severity of CHD has not yet been explored. Methods: Four hundred and seventy-eight angiografically defined subjects (325 CHD patients and 153 CHD-free controls) were enrolled in this study. The rs662799 polymorphism was genotyped, and the fasting lipid data were collected for all participants. The severity of CHD was evaluated for the CHD patients by using Gensini scores. Results: The variant C allele of the rs662799 polymorphism was associated with lower levels of HDL-C in CHD-free women, and higher levels of TG and TG/HDL-C in women with CHD (P \u3c 0.05 for all). The C allele was associated with higher prevalence of dyslipidemia and higher levels of Gensini scores only in women (P \u3c 0.05 for both), but not in men. Multivariate linear regression analysis showed that the rs662799 polymorphism was independently associated with the Gensini scores in women after adjustment for other potential CHD risk factors (Beta = 0.157, 95 % CI: 0.017–0.298, P = 0.028). Conclusion: Our data indicate that the rs662799 polymorphism is associated with dyslipidemia and the severity of CHD in Chinese women

    Effect of Metformin on Lactate Metabolism in Normal Hepatocytes under High Glucose Stress in Vitro

    Get PDF
    Objective To study the effect of metformin on lactate metabolism in hepatocytes in vitro under high glucose stress. In vitro LO2 cells, liver cells were randomly divided into blank control group, 25 tendency/L glucose solution, 27 tendency/L glucose solution,29 tendency/L glucose solution, 31 tendency/L glucose solution, 33 tendency/L glucose solution,35 tendency/L glucose solution treatment group, the optimal concentration of 31 tendency after L, use 30 tendency for L metformin solution, and then divided into blank control group, the optimal concentration of glucose solution, normal liver cells + metformin solution normal liver cells. The optimal concentration of glucose solution normal liver cells + metformin solution respectively in the 12 h, 24 h,48 h on cell count plate to calculate the number of liver cells, and using lactic acid determination kit the optimal concentration of glucose solution + normal liver cells and normal liver cells + the optimal concentration of glucose solution + metformin solution respectively in the 12 h, 24 h, 48 h of cell cultures of lactic acid value. There was no significant change in the lactic acid concentration but significant increase in the number of surviving hepatocytes in the highglycemic control group compared with that in the high-glycemic control group without metformin. Metformin has no significant effect on lactic acid metabolism of hepatocytes under high glucose stress in vitro, and has a protective effect on hepatocytes under high glucose stress. Based on this,it is preliminarily believed that metformin is not the direct factor leading to diabetic lactic acidosis

    The interaction between miR160 and miR165/166 in the control of leaf development and drought tolerance in Arabidopsis

    Get PDF
    MicroRNAs (miRNAs) are a class of non-coding RNAs that play important roles in plant development and abiotic stresses. To date, studies have mainly focused on the roles of individual miRNAs, however, a few have addressed the interactions among multiple miRNAs. In this study, we investigated the interplay and regulatory circuit between miR160 and miR165/166 and its effect on leaf development and drought tolerance in Arabidopsis using Short Tandem Target Mimic (STTM). By crossing STTM160 Arabidopsis with STTM165/166, we successfully generated a double mutant of miR160 and miR165/166. The double mutant plants exhibited a series of compromised phenotypes in leaf development and drought tolerance in comparison to phenotypic alterations in the single STTM lines. RNA-seq and qRT-PCR analyses suggested that the expression levels of auxin and ABA signaling genes in the STTM-directed double mutant were compromised compared to the two single mutants. Our results also suggested that miR160-directed regulation of auxin response factors (ARFs) contribute to leaf development via auxin signaling genes, whereas miR165/166- mediated HD-ZIP IIIs regulation confers drought tolerance through ABA signaling. Our studies further indicated that ARFs and HD-ZIP IIIs may play opposite roles in the regulation of leaf development and drought tolerance that can be further applied to other crops for agronomic traits improvement

    The interaction between miR160 and miR165/166 in the control of leaf development and drought tolerance in Arabidopsis

    Get PDF
    MicroRNAs (miRNAs) are a class of non-coding RNAs that play important roles in plant development and abiotic stresses. To date, studies have mainly focused on the roles of individual miRNAs, however, a few have addressed the interactions among multiple miRNAs. In this study, we investigated the interplay and regulatory circuit between miR160 and miR165/166 and its effect on leaf development and drought tolerance in Arabidopsis using Short Tandem Target Mimic (STTM). By crossing STTM160 Arabidopsis with STTM165/166, we successfully generated a double mutant of miR160 and miR165/166. The double mutant plants exhibited a series of compromised phenotypes in leaf development and drought tolerance in comparison to phenotypic alterations in the single STTM lines. RNA-seq and qRT-PCR analyses suggested that the expression levels of auxin and ABA signaling genes in the STTM-directed double mutant were compromised compared to the two single mutants. Our results also suggested that miR160-directed regulation of auxin response factors (ARFs) contribute to leaf development via auxin signaling genes, whereas miR165/166- mediated HD-ZIP IIIs regulation confers drought tolerance through ABA signaling. Our studies further indicated that ARFs and HD-ZIP IIIs may play opposite roles in the regulation of leaf development and drought tolerance that can be further applied to other crops for agronomic traits improvement

    The Making of Leaves: How Small RNA Networks Modulate Leaf Development

    Get PDF
    Leaf development is a sequential process that involves initiation, determination, transition, expansion and maturation. Many coding genes and a few non-coding small RNAs (sRNAs) have been identified as being involved in leaf development. sRNAs and their interactions not only determine gene expression and regulation, but also play critical roles in leaf development through their coordination with other genetic networks and physiological pathways. In this review, we first introduce the biogenesis pathways of sRNAs, mainly microRNAs (miRNAs) and trans-acting small interfering RNAs (ta-siRNAs), and then describe the function of miRNA-transcription factors in leaf development, focusing on guidance by interactive sRNA regulatory networks

    Glucagon regulates hepatic lipid metabolism via cAMP and Insig-2 signaling: implication for the pathogenesis of hypertriglyceridemia and hepatic steatosis

    Get PDF
    Insulin induced gene-2 (Insig-2) is an ER-resident protein that inhibits the activation of sterol regulatory element-binding proteins (SREBPs). However, cellular factors that regulate Insig-2 expression have not yet been identified. Here we reported that cyclic AMP-responsive element-binding protein H (CREBH) positively regulates mRNA and protein expression of a liver specific isoform of Insig-2, Insig-2a, which in turn hinders SREBP-1c activation and inhibits hepatic de novo lipogenesis. CREBH binds to the evolutionally conserved CRE-BP binding elements located in the enhancer region of Insig-2a and upregulates its mRNA and protein expression. Metabolic hormone glucagon and nutritional fasting activated CREBH, which upregulated expression of Insig-2a in hepatocytes and inhibited SREBP-1c activation. In contrast, genetic depletion of CREBH decreased Insig-2a expression, leading to the activation of SREBP-1c and its downstream lipogenic target enzymes. Compromising CREBH-Insig-2 signaling by siRNA interference against Insig-2 also disrupted the inhibitory effect of this signaling pathway on hepatic de novo triglyceride synthesis. These actions resulted in the accumulation of lipid droplets in hepatocytes and systemic hyperlipidemia. Our study identified CREBH as the first cellular protein that regulates Insig-2a expression. Glucagon activated the CREBH-Insig-2a signaling pathway to inhibit hepatic de novo lipogenesis and prevent the onset of hepatic steatosis and hypertriglyceridemia
    corecore