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A major challenge in post-genomic research is to understand how 

physiological and pathological phenotypes arise from the networks of 

expressed genes1 and to develop powerful tools for translating the 

information exchanged between gene and the organ system networks. 

Although different expression modules may contribute independently to 

different phenotypes2,3, it is difficult to interpret microarray experimental 

results at the level of single gene associations4. The global effects5 and 

response pathways6 of small molecules in cells have been investigated, but 

the quantitative details of the activation mechanisms of multiple pathways in 

vivo are not well understood. Similar response networks7,8,9 indicate similar 

modes of action10, and gene networks may appear to be similar despite 

differences in the behaviour of individual gene groups11,12. Here we establish 

the method for assessing global effect spectra of the complex signaling 

forms using Global Similarity Index (GSI) in cosines vector included angle. 

Our approach provides quantitative multidimensional measures of genes 

expression profile based on drug-dependent phenotypic alteration in vivo. 

These results make a starting point for identifying relationships between GSI 

at the molecular level and a step toward phenotypic outcomes at a system 

level to predict action of unknown compounds and any combination therapy. 

We applied both top-down and bottom-up approaches in this research 

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
08

.1
68

8.
1 

: P
os

te
d 

15
 M

ar
 2

00
8



on the ischaemic mouse hippocampus (Fig.1). Baicalin (BA), jasminoidin 

(JA), cholic acid (CA), Concha margaritifera (CM) and nimodipine (NI) 13,14 

have different effects on neurons subjected to an ischaemic insult. IV after 

occlusion of the middle cerebral artery was significantly smaller after 

treatment with each compound except CM; the reduction in IV was greatest 

for NI (Fig.2a, F=17.01, *P < 0.05, **P < 0.01 vs. vehicle; mean ± SD, 

ANOVA, n = 7–9). In the vehicle- and sham-treated mice, 24.06% (90/374) 

of genes differed in their expression in the hippocampus. Although 90 genes 

exhibited highly significant differences in expression, only one-third (32 

genes) of the cDNAs showed average differences greater than twofold (Fig. 

2b). Compared with the vehicle-treated condition, expression differed in 99, 

72, 106, 62 and 62 genes in ischaemic mouse hippocampi treated with BA, 

JA, CA, CM, and NI, respectively. Only eight genes overlapped in the 

hippocampi treated with BA, JA, CA, and NI versus CM and vehicle, and 19 

genes were shared between all groups (Supp Table 1) (Fig. 2b). Based on 

data from a previous study15, these genes were expected to respond to 

ischaemic injury or are related to hippocampal function, except that 

Selenbp2 was null. An interesting contradiction is that the eight overlapping 

genes should contribute most to the pharmacological effect, but this was not 

supported by direct comparison in PCA (Fig.2c), which showed that PCA1 
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accounted for 56.3% and PCA1-2 for 67.8% of the pharmacological 

variation. This dominant pattern of expression of the top five major genes 

was clearly associated with G protein-coupled receptors (GPCRs) and Ras 

transcription, which did not overlap in the larger altered genes that protect 

against cerebral ischaemia such as RGS6, Cbx3, and Grb2 (Fig.2c)16. Only 

three overlapping genes in black pane (Fig.2d) contributed to the 

pharmacological effect based on the changed phenotypes, although 15 genes 

were shared in all compound groups (Suppl Table 2). The PCA showed that 

another five top genes might contribute to the pharmacological action, of 

which three genes Rgs6, Cbx3, and Grb2 in black pane were consistent with 

the above analysis (Fig.2c). PCA1 accounted for 60.29% and PCA2 14.50% 

of the variation. We infer that studying the effects of these candidate genes 

on pharmacological behaviour requires more than direct comparison analysis. 

Expressions of the eight selected genes observed by microarray analysis 

were independently confirmed by Real-time RT-PCR, which showed that 

Rgs6 had the highest activity (Fig.2e). 

We next designed two two-level factional experiments (Fig.3a-d) to 

study the mechanism of the concept of multivalent chemotherapy17. The 

ratios of overlapping genes (ROG) (23/133) and non-overlapping to 

overlapping genes (RNOG) (23/23/133) were 0.1729 and 4.78, respectively. 
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The ROG and RNOG of JA+BA versus BA or JA alone were 0.2667 

(44/165) and 2.75 (44/44/165), respectively (Fig.3c), suggesting the 

presence of more overlapping genes in the combination treatment (Fig.3b-d). 

Variations of gene expression profiles of eight pathways (Fig.3e) revealed 

that the extracellular signal-regulated kinase mitogen-activated protein 

kinase (Erk-MAPK) network shared different conditions in these treated 

groups because only some significantly altered genes emerged in this 

network (Fig.3f). One challenge that emerged was whether direct 

comparison analysis of the ROG and NROG could sufficiently reveal 

essential information about broad changes in so many pathways. 

Some differences in gene expression of less than 1.5-fold are robustly 

associated with behavioural differences3 and might be as important as those 

of genes with greater differences in expression condition. The fold change in 

expression may not be linearly related to phenotype behaviour because a 

smaller fold change (–1.72) had a higher correlation coefficient (0.95), and a 

larger fold change (–2.83) had a lower coefficient (0.85)18. We hypothesized 

that GSI could be used to quantitatively analyse the gene expression pattern 

of mouse hippocampus treated with BA, JA, CA, or NI alone or in 

combination. The GSI from this approach was greater than the Pearson 

coefficients, which were all < 0.7, and near to the Euclidean distance (the 
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range not wider than our approach) (Fig.4a). 

GSI after treatment with BA, JA, CA, or NI relative to the GSI of the 

sham treatment decreased gradually. The GSIs for BA and JA were similar 

(0.92) and were closer to that for the sham condition. Although the GSI for 

NI was 0.62 (Fig.4b), it produced significant IV. These results suggest that 

the same phenotype emerged despite the different profiles of gene 

expression; this observation reflects the chemical-dependent response and 

the integrated action of multi-target drugs.  

JA+CA shared different GSI with JA, CA and NI (0.57, 0.68, 0.93), 

respectively. So as to GSI exist in JA+BA with JA, BA and NI (0.81, 0.79, 

and 0.91) (Fig.4b). This suggests that GSI provides an approach independent 

of ROG and RNOG to represent the pattern of gene expression in 

chemogenomic profiling. The more overlapping genes in not represent 

higher GSI, so as to the lower overlapping ones. For example, we observed a 

higher percentage of overlapping genes (60%) do a lower GSI (0.72) for JA 

or NI, but a lower percentage of overlapping genes (44%) do a higher GSI 

(0.93) for JA+CA or NI (44%). 

 Although usually applied to relatively small numbers of genes19, 

hierarchical clustering in an independent analysis showed that JA+CA with 

NI, JA+BA with CA, and BA with JA, in three different categories (Fig.4c). 
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PCA1-3 accounted for 80% of the variation (Fig.4e), which was consistent 

with the clustering among the six groups (Fig.4d). Both methods validated 

the results of the GSI determined by varying the combination treatment. In 

independent experiments, the IV and neurological score was respectively 

significantly smaller (P = 0.028) in all groups except the CM group than in 

the vehicle group (Fig.5a,b). The CIV (Fig.5c) did not differ significantly 

between groups (F7,127 = 2.68, P > 0.05), but the PIV was smaller in all 

compound-treated groups (F7,127 = 20.71, P < 0.001). 

New morphological features appear predominantly because of 

modifications of the spatial patterns of gene expression20, confirming that 

similar phenotypes are secondary consequences of similar gene expression 

and that a transcription defect may be crucial to the development of a 

clinical syndrome. Although each drug profile represents the drug’s own 

signature at the transcriptional and molecular pharmacological levels21, most 

of the genes associated with a particular biological function are up- or 

down-regulated in a similar way, and the conserved functions of groups of 

genes should be reflected in similar patterns of gene expression in yeast, 

worms, fruit flies and humans22. GSI showed stable variations in multiple 

comparative studies and indicated a robust association between the GSI shift 

and plasticity of outcomes. Our results might provide new insights into the 
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mechanisms of a compound’s action in the ischaemic hippocampus that 

underlie pharmacological plasticity. We believe that systematic drug-design 

strategies should be directly against multiple targets, and that this novel 

drug-design paradigm might help develop more efficient compounds than 

the currently favoured single-target drugs12, which interactions of the most 

promising candidates23 appear to be fundamental to improving future stroke 

treatment. Integrating the clinical data from a patient’s records24 and other 

clinical or experimental variables25 is also promising. Thus, systems to 

augment expression analysis with automated literature extraction or 

organization26 are likely to prove valuable in drawing meaningful and 

reproducible conclusions. Our data demonstrated a molecular GSI of 

“pattern signature” in the mouse ischaemic hippocampus that was robustly 

associated with the pharmacological effects and provided quantitative 

assessment of a wide range of responses. These results support the idea that 

functional predictions based on molecular phenotype association27 provide a 

guide for studying combinations in system-oriented drug design9. 

Developing innovative scientific methods for discovery, validation, 

characterization and standardization of multi-component botanical 

therapeutics emerging synergic outcomes, and the network and pathways is 

essential28. 
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Figure 1. Overview of the systemic analysis line. a-c, Top-down approach. 

d-e, Bottom up method. StkE, Science Signal Transduction Knowledge 

Environment;MAPK, mitogen-activated protein kinase; PCA, principal 

component analysis;GSI, global similarity index; IV,Infarction volume; PIV, 

peripheral IV; CIV, central IV; IE,Indenpent experiment; RT-PCR, 

Reverse Transcription-Polymerase Chain Reaction. 

 

Figure 2 Plasticity of pharmacological phenotype and compound-dependent 

altered genes in the ischemic mouse hippocampus. a, Plasticity of IV in 

mouse hippocampus with sham, vehicle, BA, JA, CA, CM or NI treatment. 

*P < 0.05, **P < 0.01 vs. vehicle. b,Altered genes in the ischemic mouse 

hippocampus in animals treated with vehicle, CM, BA, JA, CA, or NI are 

indicated as a function of both the fold difference and statistical significance 

(P) for each of the 374 cDNAs on the microarray (tabulated P-values from 

ANOVA, n ≥ 9 animals per group). Statistical analysis was performed on the 

mean expression levels of all 374 cDNAs in each of six experimental groups. 

Numbers represent different (in italic) or overlapping genes in two or more 

groups. c, Different contributing genes in the direct comparison analysis and 

PCA. Eight overlapping genes existed in all pharmacologically significant 

groups compared with the vehicle group. The direct comparison model 
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showed that expression of three genes decreased (in panel) after combination 

therapy (above). The magnitude of expression differences is shown as the 

base average ratio of the gene expression level in the treated mouse ischemic 

hippocampus relative to that in the vehicle-treated ischemic hippocampus. 

Higher expression in the hippocampus is shown in red and lower expression 

in blue; the colour intensity is proportional to the magnitude of the 

expression difference as indicated by the colour bar at the bottom of the 

figure. d, Overlapping genes in all compound-treated scaling groups. e, 

Selected gene expression (Rgs6,regulator of G-protein signaling 6) was 

validated in real-time PCR. Kcnmb, large-conductance calcium-activated; 

Tcf, T cell factor;MMP, matrix metalloproteinase;Dgke, iacylglycerol kinase, 

epsilon; Camk, calcium/calmodulin-dependent proten kinase; Eef. 

elongation factor; Selenbp2, Mus musculus selenium binding protein 2; 

Calm, calmodulin; Cbx, chromobox homolog;Grb, growth factor receptor 

bound protein 

 

Figure 3  Molecular profiling shifts in combination therapy comparing to 

that of single compound. a, The numbers of altered genes in ischemic mouse 

hippocampus treated with compounds alone (JA, CA) or in combination 

(JA+CA) and the combination of JA+BA relative to treatment with JA or BA. 
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c, Numbers indicate different and overlapping genes in hippocampus treated 

with a single compound or with combined compounds. Visualizing gene 

expression of JA, CA and two-compound treatment, compare NI (b) and 

JA+BA with single compounds (d). Only the 374 cDNAs exhibiting > 

1.25-fold mean difference between compounds and vehicle are shown. e, 

The gene expression profiles of all groups contrast in nine pathways. The 

374 cDNAs predicted the outcome in all effective groups and contribute to 

many pathways, such as Wnt, p53, MAPK and GPCR (arbitrary fold 

criterion depicted for graphic representation only). Red denotes an increased 

mRNA level compared with the average of all animals. Green denotes a 

decreased mRNA level. f, Erk-MAPK networks display in different groups. 

Only the gene altered significantly in all groups and which of the Pearson 

coefficients > 0.5 were selected and linked with a line. White, plum and 

cardinal red circles represent altered genes whose ratios exceeded 1.5, 1.7 

and 2.0, respectively. Green circles represent genes changed significantly by 

the combination treatment but not by the single treatment; blue circles are 

the genes only changed significantly by the single treatment. 

 

Figure 4 GSI of compound-oriented profiles of gene expression and 

validation by an independent experiment. a, Our global similarity analysis 
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approach compared with the Euclidean distance and Pearson coefficient. b, 

GSI and percent of overlapping and non-overlapping genes in the two 

groups. c, Hierarchical clustering and PCA indicate the existence of three 

categories of compound-dependent gene expression profiles(d). e, PCA 

indicated similar results of clustering analysis for the PC1, PC2 and PC3 

maps; the sum accounted for 81.08% of the variance in the data and the 

individual contributions were 57.63%, 13.15% and 10.30%, respectively. 

 

Figure 5 Gene expression profiles predict pharmacological outcomes. IV 

was significantly lower after treatment with all compounds except CM. a, IV. 

F =16.23, ** P < 0.01 vs. vehicle; mean ± SD, ANOVA, n = 10).b, 

Behaviour score (F = 12.34, ** P < 0.01 vs. vehicle; mean ± SD, ANOVA, n 

= 10). JA+CA and NI produced the highest scores. c, Magnetic resonance 

imaging (MRI) results were consistent with the behaviour scores in the PIV 

but not CIV. This pharmacological effect confirmed the categories based on 

gene expression profiles of the ischemic mouse hippocampus *, #P < 0.05, 

**, ##P < 0.01 vs. vehicle. 
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Methods Summary 
 

GSI Approach  
 
    The similarity between chips can be calculated by pairing comparing 

gene expression profile. For two gene microarray a  and b , containing n  

genes, the gene expression vector is t
ni xxxxx ],,,,,[ 21 ……=  and 

t
nj yyyyy ],,,,,[ 21 ……=  respectively. The similarity between them can be 

calculated by cosine coefficient 

yx
yxsimilarity

⋅
⋅=                               (1) 

Gene microarray can simultaneously detect expression of thousands of 

genes. For two gene expression vector x  and y , the significant expression 

gene is xGene  and yGene  respectively. In addition, the total expression 

gene is the union of xGene  and yGene . The number of total expression gene 

is geneChangen _ . The number of discrepancy genes is diffn , which means there are 

diffn  genes significantly expressed in microarray a  instead of b  or in the 

inverse situation. We calculated the similarity between two microarray data 

as 

geneChangediffgenediffgenetotalchip nnSimSimSimilarity ___ /)1( ×−−=            (2) 

Here, genetotalSim _  and genediffSim _  is the similarity of original gene data and 

the discrepancy genes according to formula (1). diffn  In addition, geneChangen _  
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is the number of discrepancy gene and all changed genes, respectively. The 

second half part of formula (2) is modification to the similarity of all 

changed genes. 

      The similarity can be used to evaluate the consistency of data from 

different blocks in one chip. Because certain ratio value of one gene maybe 

losts in the practice. We proposed a wrong data coefficient to describe those 

situations. It is calculated by 

               nmcoefwrong /1_ −=                             (3) 

Here, m  is the number of absent data and n  is the number of all genes in 

one microarray. Moreover, the similarity between different blocks is 

calculated by 

  )/)1((_ ___ geneChangediffgenediffgenetotalblock nnSimSimcoefWrongSimilarity ×−−×=   (4) 

The similarity between samples from same group can be calculated in the 

same manner. In addition, it can be used to describe the magnitude of 

biological variation. Moreover, the similarity of microarray data from 

different groups can also be calculated according to formula (2) to observe 

whether they have similar gene expression profile. Here, we used GSI to 

represent Similaritychip only and data of Similarityblock were not shown. 
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