66 research outputs found

    Bilateral Fronto-Parietal Integrity in Young Chronic Cigarette Smokers: A Diffusion Tensor Imaging Study

    Get PDF
    Cigarette smoking continues to be the leading cause of preventable morbidity and mortality in China and other countries. Previous studies have demonstrated gray matter loss in chronic smokers. However, only a few studies assessed the changes of white matter integrity in this group. Based on those previous reports of alterations in white matter integrity in smokers, the aim of this study was to examine the alteration of white matter integrity in a large, well-matched sample of chronic smokers and non-smokers.Using in vivo diffusion tensor imaging (DTI) to measure the differences of whole-brain white matter integrity between 44 chronic smoking subjects (mean age, 28.0±5.6 years) and 44 healthy age- and sex-matched comparison non-smoking volunteers (mean age, 26.3±5.8 years). DTI was performed on a 3-Tesla Siemens scanner (Allegra; Siemens Medical System). The data revealed that smokers had higher fractional anisotropy (FA) than healthy non-smokers in almost symmetrically bilateral fronto-parietal tracts consisting of a major white matter pathway, the superior longitudinal fasciculus (SLF).We found the almost symmetrically bilateral fronto-parietal whiter matter changes in a relatively large sample of chronic smokers. These findings support the hypothesis that chronic cigarette smoking involves alterations of bilateral fronto-parietal connectivity

    Low-Dose Recombinant Adeno-Associated Virus-Mediated Inhibition of Vascular Endothelial Growth Factor Can Treat Neovascular Pathologies Without Inducing Retinal Vasculitis

    Get PDF
    The wet form of age-related macular degeneration is characterized by neovascular pathologies that, if untreated, can result in edemas followed by rapid vision loss. Inhibition of vascular endothelial growth factor (VEGF) has been used to successfully treat neovascular pathologies of the eye. Nonetheless, some patients require frequent intravitreal injections of anti-VEGF drugs, increasing the burden and risk of complications from the procedure to affected individuals. Recombinant adeno-associated virus (rAAV)-mediated expression of anti-VEGF proteins is an attractive alternative to reduce risk and burden to patients. However, controversy remains as to the safety of prolonged VEGF inhibition in the eye. Here, we show that two out of four rAAV serotypes tested by intravitreal delivery to express the anti-VEGF drug conbercept lead to a dose-dependent vascular sheathing pathology that is characterized by immune cell infiltrates, reminiscent of vasculitis in humans. We show that this pathology is accompanied by increased expression in vascular cell adhesion molecule 1 (VCAM1) and intercellular adhesion molecule 1 (ICAM1), both of which promote extravasation of immune cells from the vasculature. While formation of the vascular sheathing pathology is prevented in immunodeficient Rag-1 mice that lack B and T cells, increased expression of VACM1 and ICAM1 still occurs, indicating that inhibition of VEGF function leads to expression changes in cell adhesion molecules that promote extravasation of immune cells. Importantly, a 10-fold lower dose of one of the vectors that cause a vascular sheathing pathology is still able to reduce edemas resulting from choroidal neovascularization without causing any vascular sheathing pathology and only a minimal increase in VCAM1 expression. The data suggest that treatments of neovascular eye pathologies with rAAV-mediated expression of anti VEGF drugs can be developed safely. However, viral load needs to be adjusted to the tropisms of the serotype and the expression pattern of the promoter

    CIRBP is a novel oncogene in human bladder cancer inducing expression of HIF-1 alpha

    Get PDF
    Cold-inducible RNA binding protein (CIRBP) has been reported to be associated with distinct tumorigenesis. In this study, we investigated the role of CIRBP in human bladder cancer (BCa), indicating that CIRBP is overexpressed in BCa tissues and cell lines to promote proliferation and migration. Moreover, CIRBP could induce expression of HIF-1 alpha via binding to the 3'-UTR of its mRNA to increase the mRNA stability in BCa cells. Furthermore, we demonstrated that PTGIS is a HIF-1 alpha targeted gene, a major regulator in hypoxic cancer progression by activating transcription of various oncogenes. Our results also suggested that overexpression of HIF-1 alpha may suppress the expression of PTGIS in BCa cells, by binding to HRE sequence at the promoter region of PTGIS. In addition, we found a strongly downregulation of PTGIS in BCa tissue and transcriptionally inhibited by HIF-1 alpha in BCa cells, which could be triggered by its DNA methylation. Further result suggested that knockdown of CIRBP could promote the expression of PTGIS, meanwhile knockdown of PTGIS could partially rescue CIRBP-deficiency induced inhibition of migration and proliferation in BCa cells. Taken together, our study indicated that CIRBP could be a novel oncogene in human bladder cancer inducing transcription of HIF-1 alpha, which could inhibit expression of methylated PTGIS

    Dynamic active-site generation of atomic iridium stabilized on nanoporous metal phosphides for water oxidation

    Get PDF
    Designing efficient single-atom catalysts (SACs) for oxygen evolution reaction (OER) is critical for water-splitting. However, the self-reconstruction of isolated active sites during OER not only influences the catalytic activity, but also limits the understanding of structure-property relationships. Here, we utilize a self-reconstruction strategy to prepare a SAC with isolated iridium anchored on oxyhydroxides, which exhibits high catalytic OER performance with low overpotential and small Tafel slope, superior to the IrO2. Operando X-ray absorption spectroscopy studies in combination with theory calculations indicate that the isolated iridium sites undergo a deprotonation process to form the multiple active sites during OER, promoting the O–O coupling. The isolated iridium sites are revealed to remain dispersed due to the support effect during OER. This work not only affords the rational design strategy of OER SACs at the atomic scale, but also provides the fundamental insights of the operando OER mechanism for highly active OER SACs

    TRIM25 Suppresses Rabies Virus Fixed HEP-Flury Strain Production by Activating RIG-1-Mediated Type I Interferons

    No full text
    Rabies remains a great threat to public health worldwide. So far, the mechanism of rabies virus (RABV) infection is not fully understood, and there is no effective treatment for rabies. Identifying more host restriction factors of RABV will spur the development of novel therapeutic interventions against rabies. Accumulating studies suggest that tripartite motif-containing (TRIM) proteins have great effects on virus replication. TRIMs control the antiviral responses through either direct interaction with viral proteins or indirect regulation of innate immune signaling molecules in the host. The role of TRIM25 in rabies virus (RABV) infection is poorly understood. Using next-generation sequencing, we found that TRIM25 is upregulated during HEP-Flury infection. Knockdown of TRIM25 enhances HEP-Flury production, while overexpression of TRIM25 suppresses HEP-Flury replication. Knockdown of interferon α and interferon β weakens the anti-RABV response induced by TRIM25 overexpression, and potentiates RABV production. Furthermore, we found that TRIM25 regulates type-I interferon response by targeting retinoic acid-inducible gene I (RIG-I) during HEP-Flury infection. Knockdown of RIG-I weakens the anti-HEP-Flury response induced by TRIM25 overexpression, indicating that TRIM25 regulates RABV production via the RIG-I-IFN axis. In addition, we observed that TRIM25 does not directly interact with HEP-Flury structural proteins, suggesting that TRIM25 regulates HEP-Flury production indirectly. Taken together, our work identifies TRIM25 as a new host factor involved in HEP-Flury infection, which may be a potential target for the development of antiviral drugs against RABV

    Rhabdovirus Infection Is Dependent on Serine/Threonine Kinase AP2-Associated Kinase 1

    No full text
    Rabies virus (RABV) causes a fatal neurological disease in both humans and animals. Understanding the mechanism of RABV infection is vital for prevention and therapy of virulent rabies infection. Our previous proteomics analysis based on isobaric tags for relative and absolute quantitation to identify factors revealed that RABV infection enhanced AP-2-associated protein kinase 1 (AAK1) in N2a cells. In this study, to further confirm the role of AAK1, we showed that RABV infection increased the transcription and expression of AAK1 in N2a cells. AAK1 knockdown significantly decreased RABV infection in both N2a and BHK-21 cells. AAK1 knockout inhibited RABV infection in N2a cells. Furthermore, inhibition of AAK1 kinase activity using sunitinib decreased RABV infection. However, AAK1 overexpression did not change RABV infection in vitro. Therapeutic administration of sunitinib did not significantly improve the survival rate of mice following lethal RABV challenge. In addition, AAK1 knockdown decreased infection in N2a cells by vesicular stomatitis virus, which is another rhabdovirus. These results indicate that rhabdovirus infection is dependent on AAK1 and inhibition of AAK1 is a potential strategy for the prevention and therapy of rabies

    Efficacious, safe, and stable inhibition of corneal neovascularization by AAV-vectored anti-VEGF therapeutics

    Get PDF
    Corneal neovascularization (CoNV) leads to visual impairment, affecting over 1.4 million people in the United States per year. It is caused by a variety of pathologies, such as inflammation, hypoxia, and limbal barrier dysfunction. Injection of the anti-vascular endothelial growth factor (VEGF) drug KH902 (conbercept) can inhibit CoNV but requires repeated dosing that produces associated side effects, such as cornea scar. To explore more efficacious and long-lasting treatment of CoNV, we employed recombinant adeno-associated virus (rAAV)2 and rAAV8 vectors to mediate KH902 expression via a single intrastromal injection and investigated its anti-angiogenic effects and safety in both alkali-burn- and suture-induced CoNV mouse models. Our results showed that rAAV-mediated KH902 mRNA expression in the cornea was sustained for at least 3 months after a single intrastromal injection. Moreover, the expression level of rAAV8-KH902 far exceeded that of rAAV2-KH902. A single-dose rAAV8-KH902 treatment at 8 x 10(8) genome copies (GCs) per cornea dramatically inhibited CoNV for an extended period of time in mouse CoNV models without adverse events, whereas the inhibition of CoNV by a single intrastromal administration of the conbercept drug lasted for only 10-14 days. Overall, our study demonstrated that the treatment of CoNV with a single dose of rAAV8-KH902 via intrastromal administration was safe, effective, and long lasting, representing a novel therapeutic strategy for CoNV

    Quantitative Proteomics Using Stable Isotope Labeling with Amino Acids in Cell Culture Reveals Protein and Pathway Regulation in Porcine Circovirus Type 2 Infected PK-15 Cells

    No full text
    The infection of host cells by porcine circovirus type 2 (PCV2) leads to extensive modulation of the gene expression levels of target cells. To uncover the pathogenesis and virus-host interactions of PCV2, a quantitative proteomic study using the stable isotope labeling with amino acids in cell culture (SILAC), coupled with mass spectrometry, was performed on PCV2-infected PK-15 cells. The SILAC-based approach identified 1341 proteins, 163 of which showed significant change in level at 72 h after infection (79 up-regulated and 84 down-regulated). The modulated proteins included a number of proteins involved in substrate transport, cytoskeletal changes, and the stress response. Changes in the expression levels of selected proteins were verified by Western blot analysis. Ingenuity Pathway Analysis was used to reveal protein and interactive pathway regulation in response to PCV2 infection. Functional network and pathway analyses could provide insights into the complexity and dynamics of virus–host cell interactions and may accelerate our understanding of the mechanisms of PCV2 infection
    • …
    corecore