6 research outputs found

    Carbon-based asymmetric capacitor for high-performance energy storage devices

    No full text
    Carbon-based materials are widely used in energy storage research, as attractive materials with high conductivity, low cost, and high availability. However, a relatively low performance (e.g., energy and power densities) compared with metal oxides is an obstacle to use for commercial applications. Herein, we report on high-performance metal oxide-free asymmetric capacitors (ASCs) using n-type and p-type graphene films which are doped by nitrogen and boron atoms, respectively, exhibiting high energy and power densities with excellent stability. The enhanced performances of the ASCs arises from the synergistic effect of the non-faradaic capacitance and pseudocapacitance, which are confirmed with new analysis using cyclic voltammetry and electrochemical impedance spectroscopy for a pseudocapacitance effect of intercalation/deintercalation and galvanostatic charge-discharge profiles for and non-faradaic capacitance. The new ASC in an ionic liquid electrolyte (e.g., pure EMIMBF4) shows the high energy density of 77.41 Wh kg−1 in 3.0 V of the operating potential window with the excellent retention stability of ∼87% after 10,000 cycles. The carbon-based asymmetric capacitor of semiconducting graphene electrodes can offer the promise of exploiting both non-faradaic capacitance and intercalation/deintercalation pseudocapacitance to obtain a high-performance energy storage device. © 2019 Elsevier Lt

    Highly active and stable layered ternary transition metal chalcogenide for hydrogen evolution reaction

    No full text
    Layered ternary transition metal chalcogenides (TTMCs) material has great potentials that can overcome to the limitation of active sites which is challenging in binary transition metal chalcogenides (BTMC), such as MoS2, towards electrochemical hydrogen production. Here, we demonstrate TTMC material which contains two transition metals Cu and Mo with chalcogen S. The TTMC, Cu2MoS4 has been successfully synthesized by a facile solution-processed method. Moreover, by anion doping such as Se in as the synthesized Cu2MoS4, it has been found that TTMC can be exfoliated into single layer nanosheets. Furthermore, by controlling the number of layers, single layers TTMC exhibit the highest electrocatalytic activity towards hydrogen evolution reaction (HER) because the single layers can provide more catalytic active sites than multilayers and bulk. The onset potential for hydrogen generation is −96 mV for single layer TTMC electrode material with corresponding Tafel slope 52 mV/decade. After 1000 cycles with continuous electrolysis in acid electrolyte for 15 h, the electrode material preserves its structure and robust catalytic activity perfectly. Our new TTMC materials show highly active electrocatalytic performance and high stability which overcome the intrinsic limitation of BTMC. As a result, our work can guide new strategy for the developments of real applications of TMCs in HER. © 2016 Elsevier Ltd.119191sciescopu
    corecore