6 research outputs found

    Reduction of Plutonium(VI) to (V) by Hydroxamate Compounds at Environmentally Relevant pH

    No full text
    Natural organic matter is known to influence the mobility of plutonium (Pu) in the environment via complexation and reduction mechanisms. Hydroxamate siderophores have been specifically implicated due to their strong association with Pu. Hydroxamate siderophores can also break down into di and monohydroxamates and may influence the Pu oxidation state, and thereby its mobility. In this study we explored the reactions of Pu­(VI) and Pu­(V) with a monohydroxamate compound (acetohydroxamic acid, AHA) and a trihydroxamate siderophore desferrioxamine B (DFOB) at an environmentally relevant pH (5.5–8.2). Pu­(VI) was instantaneously reduced to Pu­(V) upon reaction with AHA. The presence of hydroxylamine was not observed at these pHs; however, AHA was consumed during the reaction. This suggests that the reduction of Pu­(VI) to Pu­(V) by AHA is facilitated by a direct one electron transfer. Importantly, further reduction to Pu­(IV) or Pu­(III) was not observed, even with excess AHA. We believe that further reduction of Pu­(V) did not occur because Pu­(V) does not form a strong complex with hydroxamate compounds at a circum-neutral pH. Experiments performed using desferrioxamine B (DFOB) yielded similar results. Broadly, this suggests that Pu­(V) reduction to Pu­(IV) in the presence of natural organic matter is not facilitated by hydroxamate functional groups and that other natural organic matter moieties likely play a more prominent role

    Recovery of Rare Earth Elements from Low-Grade Feedstock Leachates Using Engineered Bacteria

    No full text
    The use of biomass for adsorption of rare earth elements (REEs) has been the subject of many recent investigations. However, REE adsorption by bioengineered systems has been scarcely documented, and rarely tested with complex natural feedstocks. Herein, we engineered <i>E. coli</i> cells for enhanced cell surface-mediated extraction of REEs by functionalizing the OmpA protein with 16 copies of a lanthanide binding tag (LBT). Through biosorption experiments conducted with leachates from metal-mine tailings and rare earth deposits, we show that functionalization of the cell surface with LBT yielded several notable advantages over the nonengineered control. First, the efficiency of REE adsorption from all leachates was enhanced as indicated by a 2–10-fold increase in distribution coefficients for individual REEs. Second, the relative affinity of the cell surface for REEs was increased over all non-REEs except Cu. Third, LBT-display systematically enhanced the affinity of the cell surface for REEs as a function of decreasing atomic radius, providing a means to separate high value heavy REEs from more common light REEs. Together, our results demonstrate that REE biosorption of high efficiency and selectivity from low-grade feedstocks can be achieved by engineering the native bacterial surface

    Shotgun Proteomic Analysis Unveils Survival and Detoxification Strategies by <i>Caulobacter crescentus</i> during Exposure to Uranium, Chromium, and Cadmium

    No full text
    The ubiquitous bacterium <i>Caulobacter crescentus</i> holds promise to be used in bioremediation applications due to its ability to mineralize U­(VI) under aerobic conditions. Here, cell free extracts of <i>C. crescentus</i> grown in the presence of uranyl nitrate [U­(VI)], potassium chromate [Cr­(VI)], or cadmium sulfate [Cd­(II)] were used for label-free proteomic analysis. Proteins involved in two-component signaling and amino acid metabolism were up-regulated in response to all three metals, and proteins involved in aerobic oxidative phosphorylation and chemotaxis were down-regulated under these conditions. Clustering analysis of proteomic enrichment revealed that the three metals also induce distinct patterns of up- or down-regulated expression among different functional classes of proteins. Under U­(VI) exposure, a phytase enzyme and an ABC transporter were up-regulated. Heat shock and outer membrane responses were found associated with Cr­(VI), while efflux pumps and oxidative stress proteins were up-regulated with Cd­(II). Experimental validations were performed on select proteins. We found that a phytase plays a role in U­(VI) and Cr­(VI) resistance and detoxification and that a Cd­(II)-specific transporter confers Cd­(II) resistance. Interestingly, analysis of promoter regions in genes associated with differentially expressed proteins suggests that U­(VI) exposure affects cell cycle progression

    Bioadsorption of Rare Earth Elements through Cell Surface Display of Lanthanide Binding Tags

    No full text
    With the increasing demand for rare earth elements (REEs) in many emerging clean energy technologies, there is an urgent need for the development of new approaches for efficient REE extraction and recovery. As a step toward this goal, we genetically engineered the aerobic bacterium <i>Caulobacter crescentus</i> for REE adsorption through high-density cell surface display of lanthanide binding tags (LBTs) on its S-layer. The LBT-displayed strains exhibited enhanced adsorption of REEs compared to cells lacking LBT, high specificity for REEs, and an adsorption preference for REEs with small atomic radii. Adsorbed Tb<sup>3+</sup> could be effectively recovered using citrate, consistent with thermodynamic speciation calculations that predicted strong complexation of Tb<sup>3+</sup> by citrate. No reduction in Tb<sup>3+</sup> adsorption capacity was observed following citrate elution, enabling consecutive adsorption/desorption cycles. The LBT-displayed strain was effective for extracting REEs from the acid leachate of core samples collected at a prospective rare earth mine. Our collective results demonstrate a rapid, efficient, and reversible process for REE adsorption with potential industrial application for REE enrichment and separation

    Techno-economic and Life Cycle Analysis for Bioleaching Rare-Earth Elements from Waste Materials

    No full text
    A bioleaching process to extract rare-earth elements (REE) from fluidized catalytic cracking (FCC) catalysts was optimized using a heterotrophic bacterium <i>Gluconobacter oxydans</i> to produce organic acids from glucose. Parameters optimized included agitation intensity, oxygen levels, glucose concentrations, and nutrient additions. Biolixiviants from the optimized batch process demonstrated REE leaching efficiencies up to 56%. A continuous bioreactor system was subsequently developed to feed a leach process and demonstrated leaching efficiencies of 51%. A techno-economic analysis showed glucose to be the single largest expense for the bioleach process, constituting 44% of the total cost. The bioleaching plant described here was found profitable, although the margin was small. Lower cost carbon and energy sources for producing the biolixiviant, sourcing FCC catalysts with higher total REE content (>1.5% by mass), and improved leaching efficiencies would significantly increase the overall profit. A life cycle analysis showed that electricity and glucose required for the bioreactor had the largest potential for environmental impacts

    Techno-economic Assessment for Integrating Biosorption into Rare Earth Recovery Process

    No full text
    The current uncertainty in the global supply of rare earth elements (REEs) necessitates the development of novel extraction technologies that utilize a variety of REE source materials. Herein, we examined the techno-economic performance of integrating a biosorption approach into a large-scale process for producing salable total rare earth oxides (TREOs) from various feedstocks. An airlift bioreactor is proposed to carry out a biosorption process mediated by bioengineered rare earth-adsorbing bacteria. Techno-economic assessments were compared for three distinctive categories of REE feedstocks requiring different pre-processing steps. Key parameters identified that affect profitability include REE concentration, composition of the feedstock, and costs of feedstock pretreatment and waste management. Among the 11 specific feedstocks investigated, coal ash from the Appalachian Basin was projected to be the most profitable, largely due to its high-value REE content. Its cost breakdown includes pre-processing (leaching primarily, 77.1%), biosorption (19.4%), and oxalic acid precipitation and TREO roasting (3.5%). Surprisingly, biosorption from the high-grade Bull Hill REE ore is less profitable due to high material cost and low production revenue. Overall, our results confirmed that the application of biosorption to low-grade feedstocks for REE recovery is economically viable
    corecore