279 research outputs found

    An Extended Virtual Aperture Imaging Model for Through-the-wall Sensing and Its Environmental Parameters Estimation

    Get PDF
    Through-the-wall imaging (TWI) radar has been given increasing attention in recent years. However, prior knowledge about environmental parameters, such as wall thickness and dielectric constant, and the standoff distance between an array and a wall, is generally unavailable in real applications. Thus, targets behind the wall suffer from defocusing and displacement under the conventional imag¬ing operations. To solve this problem, in this paper, we first set up an extended imaging model of a virtual aperture obtained by a multiple-input-multiple-output array, which considers the array position to the wall and thus is more applicable for real situations. Then, we present a method to estimate the environmental parameters to calibrate the TWI, without multiple measurements or dominant scatter¬ers behind-the-wall to assist. Simulation and field experi¬ments were performed to illustrate the validity of the pro¬posed imaging model and the environmental parameters estimation method

    Spin-orbit-coupling-induced phase separation in trapped Bose gases

    Full text link
    In a trapped spin-1/2 Bose-Einstein condensate with miscible interactions, a two-dimensional spin-orbit coupling can introduce an unconventional spatial separation between the two components. We reveal the physical mechanism of such a spin-orbit-coupling-induced phase separation. Detailed features of the phase separation are identified in a trapped Bose-Einstein condensate. We further analyze differences of phase separation in Rashba and anisotropic spin-orbit-coupled Bose gases. An adiabatic splitting dynamics is proposed as an application of the phase separation.Comment: 10 pages, 7 figure

    SERCA2a gene transfer improves electrocardiographic performance in aged mdx mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cardiomyocyte calcium overloading has been implicated in the pathogenesis of Duchenne muscular dystrophy (DMD) heart disease. The cardiac isoform of sarcoplasmic reticulum calcium ATPase (SERCA2a) plays a major role in removing cytosolic calcium during heart muscle relaxation. Here, we tested the hypothesis that SERCA2a over-expression may mitigate electrocardiography (ECG) abnormalities in old female mdx mice, a murine model of DMD cardiomyopathy.</p> <p>Methods</p> <p>1 × 10<sup>12 </sup>viral genome particles/mouse of adeno-associated virus serotype-9 (AAV-9) SERCA2a vector was delivered to 12-m-old female mdx mice (N = 5) via a single bolus tail vein injection. AAV transduction and the ECG profile were examined eight months later.</p> <p>Results</p> <p>The vector genome was detected in the hearts of all AAV-injected mdx mice. Immunofluorescence staining and western blot confirmed SERCA2a over-expression in the mdx heart. Untreated mdx mice showed characteristic tachycardia, PR interval reduction and QT interval prolongation. AAV-9 SERCA2a treatment corrected these ECG abnormalities.</p> <p>Conclusions</p> <p>Our results suggest that AAV SERCA2a therapy may hold great promise in treating dystrophin-deficient heart disease.</p

    Numerical simulation of dynamic response characteristics for launch and recovery system under random irregular wave

    Get PDF
    Based on the rain-flow counting method, a new random numerical simulation method for evaluating dynamic response characteristics of a launch and recovery system is presented in this study. It takes a random irregular wave as an input, and the random distribution characteristics of the dynamic responses of the launch and recovery system of a seafloor drill is analyzed by using the rain-flow counting method. The nonlinear coupling mechanisms among the movements of the ship, the umbilical cable, and the seafloor drill caused by random irregular wave are investigated. A dynamic model that considers the influence of the seawater resistance on the launch and recovery system of seafloor drill is established. Then, significant wave heights are used to produce excitation of the random irregular wave, and the corresponding dynamic random responses of the launch and recovery system are calculated and analyzed. At the same time, the movement of the seafloor drill and the tension of the umbilical cable are calculated and analyzed for the cases of seafloor drill at different water depths. This method provides a new tool for evaluating the dynamic response characteristics of launch and recovery system of other seafloor equipment under random irregular wave

    Self‐Assembly of Therapeutic Peptide into Stimuli‐Responsive Clustered Nanohybrids for Cancer‐Targeted Therapy

    Full text link
    Clinical translation of therapeutic peptides, particularly those targeting intracellular protein–protein interactions (PPIs), has been hampered by their inefficacious cellular internalization in diseased tissue. Therapeutic peptides engineered into nanostructures with stable spatial architectures and smart disease targeting ability may provide a viable strategy to overcome the pharmaceutical obstacles of peptides. This study describes a strategy to assemble therapeutic peptides into a stable peptide–Au nanohybrid, followed by further self‐assembling into higher‐order nanoclusters with responsiveness to tumor microenvironment. As a proof of concept, an anticancer peptide termed β‐catenin/Bcl9 inhibitors is copolymerized with gold ion and assembled into a cluster of nanohybrids (pCluster). Through a battery of in vitro and in vivo tests, it is demonstrated that pClusters potently inhibit tumor growth and metastasis in several animal models through the impairment of the Wnt/β‐catenin pathway, while maintaining a highly favorable biosafety profile. In addition, it is also found that pClusters synergize with the PD1/PD‐L1 checkpoint blockade immunotherapy. This new strategy of peptide delivery will likely have a broad impact on the development of peptide‐derived therapeutic nanomedicine and reinvigorate efforts to discover peptide drugs that target intracellular PPIs in a great variety of human diseases, including cancer.A strategy for clinical translation of therapeutic peptides by assembling them into a stable peptide–Au nanohybrid, followed by further self‐assembling into higher‐order nanoclusters with responsiveness to the tumor microenvironment, is presented. An anticancer peptide termed β‐catenin/Bcl9 inhibitor is assembled into a cluster of nanohybrids termed pCluster, which potently inhibits tumor growth as well as metastasis, and synergizes with immunotherapy, while maintaining a highly favorable biosafety profile.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/148246/1/adfm201807736.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/148246/2/adfm201807736-sup-0001-S1.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/148246/3/adfm201807736_am.pd

    H19 Functions as a Competing Endogenous RNA to Regulate EMT by Sponging miR-130a-3p in Glioma

    Get PDF
    Background/Aims: Glioma is one of the most devasting tumors and confers dismal prognosis. Long noncoding RNAs(lncRNAs) have emerged as important regulators in various tumors including glioma. A classic lncRNA-H19, which is found to be highly expressed in human glioma tissues and cell lines, and is associated with tumor progression thus predicating clinical outcomes in glioma patients. However, the overall biological functions and their mechanism of H19 in glioma are not fully understood. Methods: Firstly, we analyzed H19 alterations in different grades of glioma tissues through an analysis of 5 sequencing datasets and qRT-PCR was performed to confirm the results. Next, we evaluated the effect of H19 on glioma cells migration, invasion and EMT process. Luciferase assays and RIP assays were employed to figure out the correlation of H19 and SOX4. Results: H19 was overexpressed in glioma tissues. Down-regulation of H19 led to the inhibition of migration, invasion and EMT process with a reduction in N-cadherin and Vimentin. H19 and SOX4 are both direct target of miR-130a-3p. H19 could compete with SOX4 via sponging miR-130a-3p. Conclusion: Taken together, these results provide a possible function of H19 as an oncogene in glioma tissues and provide a potential new therapeutic strategy for human glioma

    Thermoelectric transport properties of PbTe under pressure

    Get PDF
    Xiamen University of China; Specialized Research Fund for the Doctoral Program (SRFDP) [20090121120028]; Natural Science Foundation of Fujian Province, China [2009J01015]In this work, we present a comprehensive picture of structural, dynamical, electronic, and transport properties of PbTe at ambient and high pressures. The first-principles linear-response calculations show that there exists an anharmonic instability of the optical branch phonon at the Brillouin-zone (BZ) center and soft phonons at the BZ boundary X point. The k-dependent soft modes may lead to substantial changes in the thermal conductivity when the pressure is applied. The electronic band structure of both B1 and Pnma phases are investigated by full potential method with various exchange-correlation functionals. Under pressure there is a band-gap closure as well as reopening within B1 structure whereas for Pnma phase only the gap closure is observed. Their thermoelectric transport properties are studied by exploring their energy bands based on Boltzmann transport theory. We found that n-doped Pnma phase at 6.7 GPa has better thermoelectric performance than B1 phase at ambient condition, while for the p-doped case, B1 phase has much better thermoelectric properties. Energy band gap does play an important role in thermoelectric performance. At 300 K, modifications of thermoelectric properties caused by band-gap variation can be observed only at a low doping level, at 600 K the influence can be detected in mid-to-high doping levels. The detailed analysis of thermoelectric properties as respect to temperatures and carrier concentrations reveal that in the low-doping case the optimal performance occurs in 300-450 K temperature range but for mid-to-high doping cases the optimal working temperature increase to higher range. With the pressure applied, the thermoelectric response shows many interesting features. The thermoelectric figure of merit (ZT) for B1 phase achieves its maximum at middoping region with similar to 8 GPa for p doping and above 18 GPa for n doping. In the Pnma case, ZT values are more sensitive to doping than to pressure, and there is small difference between the 300 and 600 K results. These findings are expected to be useful in searching an optimal combination of doping level, working temperature, and pressure in order to achieve higher ZT in PbTe-based materials

    Genome-Wide Analysis Suggests the Relaxed Purifying Selection Affect the Evolution of WOX Genes in Pyrus bretschneideri, Prunus persica, Prunus mume, and Fragaria vesca

    Get PDF
    WUSCHEL-related homeobox (WOX) family is one of the largest group of transcription factors (TFs) specifically found in plant kingdom. WOX TFs play an important role in plant development processes and evolutionary novelties. Although the roles of WOXs in Arabidopsis and rice have been well-studied, however, little are known about the relationships among the main clades in the molecular evolution of these genes in Rosaceae. Here, we carried out a genome-wide analysis and identified 14, 10, 10, and 9 of WOX genes from four Rosaceae species (Fragaria vesca, Prunus persica, Prunus mume, and Pyrus bretschneideri, respectively). According to evolutionary analysis, as well as amino acid sequences of their homodomains, these genes were divided into three clades with nine subgroups. Furthermore, due to the conserved structural patterns among these WOX genes, it was proposed that there should exist some highly conserved regions of microsynteny in the four Rosaceae species. Moreover, most of WOX gene pairs were presented with the conserved orientation among syntenic genome regions. In addition, according to substitution models analysis using PMAL software, no significant positive selection was detected, but type I functional divergence was identified among certain amino acids in WOX protein. These results revealed that the relaxed purifying selection might be the main driving force during the evolution of WOX genes in the tested Rosaceae species. Our result will be useful for further precise research on evolution of the WOX genes in family Rosaceae
    corecore