59 research outputs found

    Catalyst Composition and Content Effects on the Synthesis of Single-Walled Carbon Nanotubes by Arc Discharge

    Get PDF
    Single-walled carbon nanotubes (SWCNTs) were prepared by a modified arc discharging furnace using Fe-Ni-Mg powders as catalyst at 600∘C. The effects of catalyst composition and content on the production rate and purity of SWCNTs are investigated in this paper. When the Fe-Ni-Mg catalyst composition is 2: 1: 2 wt% and the catalyst content is 5 wt%, the experimental results indicate that the production of SWCNTs is 12 grams per hour, and the purity and diameter of SWCNTs are 70% and 1.22 ∼1.38 nm, respectively. The results indicate that the cooperative function of catalyst composition and content plays an important role in the production of SWCNTs. The aim of this work is to control the production process of SWCNTs efficiently

    An aggregator-based dynamic pricing mechanism and optimal scheduling scheme for the electric vehicle charging

    Get PDF
    High penetration of electric vehicles (EVs) in an uncontrolled manner could have disruptive impacts on the power grid, however, such impacts could be mitigated through an EV demand response program. The successful implementation of an efficient, effective, and aggregated demand response from EV charging depends on the incentive pricing mechanism and the load shifting protocols. In this study, a genetic algorithm-based multi-objective optimization model is developed to generate hourly dynamic Time-of-Use electricity tariffs and facilitate the decision making in load scheduling. As an illustrative example, a case study was carried out to examine the effect of applying demand response for EVs in Beijing, China. With the assumptions made, the maximum peak load can be reduced by 9.8% and the maximum customer savings for the EVs owners can reach 11.85%, compared to the business-as-usual case

    Physical Characterization and Volatile Organic Compound Monitoring of Recycled Polyethylene Terephthalate under Mechanical Recycling

    Get PDF
    In this study, physical characterization and monitoring of volatile organic compounds (VOCs) were investigated on recycled polyethylene terephthalate (rPET) from a mechanical recycling process and rPET bottles made with different rPET contents, with the aim of tracing the source of rPET and assessing its safety when use as a food contact material. It was found that rPET had a similar thermal stability to that of virgin PET (vPET). rPET bottles did not show any significant changes in groups or structure and exhibit similar crystallization and melting behaviors to vPET. However, there were minor mechanical scratches in the surface micromorphology of rPET bottles, and the color of rPET bottles became darker, greener and yellower as the content of recycled material increased. The solid-state polycondensation process was found to play an important role in the removal of VOCs, as detected by headspace gas chromatography-mass spectrometry (HS-GC-MS), resulting in a very small amount of residual VOCs in rPET. Four VOCs (acetaldehyde, glycol and nonanal at levels less than 1.00 mg/kg; 2-methyl-1,3 dioxolane at levels of 1.72-5.76 mg/kg) were detected in the rPET bottles. This study shows that rPET bottles are qualified for reuse in food contact in terms of thermal properties, structure, morphology and VOC residues, although there is variability in color

    Guest editorial : Dynamic analysis, control, and situation awareness of power systems with high penetrations of power electronic converters

    Get PDF
    In recent decades, global power grids have evolved with a rapid and extensive development of power electronic converters (PEC), including renewable energy systems (RES), high-voltage DC (HVDC) transmission, flexible AC transmission system (FACTS), energy storages, and microgrids. The distinct characteristics of power electronic devices traditional synchronous generators, especially their rapid control speed, wide-band performance and lack of inertia response and spinning reserve, are altering grid dynamics, and inducing new stability challenges. Continuation of such trends could further exacerbate the risk to the stability of power grids because of factors such as low inertias, lack of spinning reserve to quickly nullify active power mismatch between demand and supply. Therefore, scientific investigations on novel dynamic modelling and stability analysis methods, data-driven monitoring and situation awareness on grid inertia-power-frequency evolution, grid dynamic frequency forecast methodologies in consideration of novel PEC control schemes, and advanced PEC grid integration control schemes to minimise frequency management risks become increasingly crucial for the secured operations of power systems with high PEC penetrations. In this Special Issue, namely ‘Dynamic Analysis, Control, and Situation Awareness of Power Systems with High Penetrations of Power Electronic Converters’, we have presented eight original papers of sufficient quality and innovation. The 10 eventually accepted papers can be clustered into three two categories, namely novel control design, stability and fault analysis

    The deubiquitinating enzyme MINDY2 promotes pancreatic cancer proliferation and metastasis by stabilizing ACTN4 expression and activating the PI3K/AKT/mTOR signaling pathway

    Get PDF
    The pathogenic mechanisms of pancreatic cancer (PC) are still not fully understood. Ubiquitination modifications have a crucial role in tumorigenesis and progression. Yet, the role of MINDY2, a member of the motif interacting with Ub-containing novel DUB family (MINDY), as a newly identified deubiquitinating enzyme, in PC is still unclear. In this study, we found that MINDY2 expression is elevated in PC tissue (clinical samples) and was associated with poor prognosis. We also found that MINDY2 is associated with pro-carcinogenic factors such as epithelial-mesenchymal transition (EMT), inflammatory response, and angiogenesis; the ROC curve suggested that MINDY2 has a high diagnostic value in PC. Immunological correlation analysis suggested that MINDY2 is deeply involved in immune cell infiltration in PC and is associated with immune checkpoint-related genes. In vivo and in vitro experiments further suggested that elevated MINDY2 promotes PC proliferation, invasive metastasis, and EMT. Meanwhile, actinin alpha 4 (ACTN4) was identified as a MINDY2-interacting protein by mass spectrometry and other experiments, and ACTN4 protein levels were significantly correlated with MINDY2 expression. The ubiquitination assay confirmed that MINDY2 stabilizes the ACTN4 protein level by deubiquitination. The pro-oncogenic effect of MINDY2 was significantly inhibited by silencing ACTN4. Bioinformatics Analysis and Western blot experiments further confirmed that MINDY2 stabilizes ACTN4 through deubiquitination and thus activates the PI3K/AKT/mTOR signaling pathway. In conclusion, we identified the oncogenic role and mechanism of MINDY2 in PC, suggesting that MINDY2 is a viable candidate gene for PC and may be a therapeutic target and critical prognostic indicator

    Animating sand as a fluid

    No full text
    My thesis presents a physics-based simulation method for animating sand. To allow for efficiently scaling up to large volumes of sand, we abstract away the individual grains and think of the sand as a continuum. In particular we show that an existing water simulator can be turned into a sand simulator within frictional regime with only a few small additions to account for inter-grain and boundary friction, yet with visually acceptable result. We also propose an alternative method for simulating fluids. Our core representation is a cloud of particles, which allows for accurate and flexible surface tracking and advection, but we use an auxiliary grid to efficiently enforce boundary conditions and incompressibility. We further address the issue of reconstructing a surface from particle data to render each frame. i

    Animating sand as a fluid

    No full text
    My thesis presents a physics-based simulation method for animating sand. To allow for efficiently scaling up to large volumes of sand, we abstract away the individual grains and think of the sand as a continuum. In particular we show that an existing water simulator can-be turned into a sand simulator within frictional regime with only a few small additions to account for inter-grain and boundary friction, yet with visually acceptable result. We also propose an alternative method for simulating fluids. Our core representation is a cloud of particles, which allows for accurate and flexible surface tracking and advection. but we use an auxiliary grid to efficiently enforce boundary conditions and incompressibility. We further address the issue of reconstructing a surface from particle data to render each frame.Science, Faculty ofComputer Science, Department ofGraduat

    A comparison of natural user interface and graphical user interface for narrative in HMD-based augmented reality.

    Get PDF
    Over the years, the various mediums available for storytelling have progressively expanded, from spoken to written word, then to film, and now to Virtual Reality (VR) and Augmented Reality (AR). In 2016, the cutting-edge Head-Mounted Display (HMD) AR Microsoft HoloLens was released. However, though it has been several years, the quality of the user experience with narration using HMD-based AR technology has been rarely discussed. The present study explored interactive narrative in HMD-based AR regarding different user interfaces and their influence on users' presence, narrative engagement and reflection. Inspired by an existing exhibition at the National Holocaust Centre and Museum in the U.K., a HoloLens narrative application, entitled The AR Journey, was developed by the authors using two different interaction methods, Natural User Interface (NUI) and Graphical User Interface (GUI), which were used to perform an empirical study. As revealed from the results of the between-subject design experiment, NUI exhibited statistically significant advantages in creating presence for users without 3D Role Playing Game (RPG) experience, and GUI was superior in creating presence and increasing narrative engagement for users with 3D RPG experience. As indicated by the results of the interviews, the overall narrative experience in HMD-based AR was acceptable, and the branching narrative design was engaging. However, HoloLens hardware issues, as well as virtuality and reality mismatch, adversely affected user experience. Design guidelines were proposed according to the qualitative results.Supplementary informationThe online version contains supplementary material available at 10.1007/s11042-021-11723-0

    Technology for the Remediation of Water Pollution: A Review on the Fabrication of Metal Organic Frameworks

    No full text
    The ineffective control of the release of pollutants into water has led to serious water pollution. Compared with conditions in the past, the polluting components in aquatic environments have become increasingly complex. Some emerging substances have led to a new threat to the safety of water. Therefore, developing cost-effective technologies for the remediation of water pollution is urgently needed. Adsorption has been considered the most effective operational unit in water treatment processes and thus adsorption materials have gained wide attention. Among them, metal organic frameworks (denoted as MOFs) have been rapidly developed in recent years due to their unique physicochemical performance. They are characterized by larger porosity and larger specific surface area, easier pore structure designing, and comfortable structural modification. In many fields such as adsorption, separation, storage, and transportation, MOFs show a better performance than conventional adsorption materials such as active carbon. Their performance is often dependent on their structural distribution. To optimize the use of MOFs, their fabrication should be given more attention, without being limited to conventional preparation methods. Alternative preparation methods are given in this review, such as diffusion, solvent thermal, microwave, and ion thermal synthesis. Furthermore, developing functionalized MOFs is an available option to improve the removal efficiencies of a specific contaminant through pre-synthetic modification and post-synthesis modification. Post-synthesis modification has become a recent research hotspot. The coupling of MOFs with other techniques would be another option to ameliorate the remediation of water pollution. On one hand, their intrinsic drawbacks may be reduced. On the other hand, their performance may be enhanced due to their interaction behaviors. Overall, such coupling technologies are able to enhance the performance of an individual material. Because the excellent performance of MOF materials has been widely recognized and their developments have received wide attention, especially in environmental fields, in the present work we provide a review of fabrication of MOFs so as to motivate readers to deepen their understanding of the use of MOFs
    • …
    corecore