
An aggregator-based dynamic
pricing mechanism and optimal
scheduling scheme for the
electric vehicle charging

Yuxi Liu1, Jie Zhu1, Yuanrui Sang2, Mostafa Sahraei-Ardakani3,
Tianjun Jing1, Yongning Zhao1 and Yingying Zheng1*
1College of Information and Electrical Engineering, China Agricultural University, Beijing, China,
2Department of Electrical and Computer Engineering, The University of Texas at El Paso, El Paso, TX,
United States, 3Department of Electrical and Computer Engineering, The University of Utah, Salt Lake
City, UT, United States

High penetration of electric vehicles (EVs) in an uncontrolled manner could

have disruptive impacts on the power grid, however, such impacts could be

mitigated through an EV demand response program. The successful

implementation of an efficient, effective, and aggregated demand response

from EV charging depends on the incentive pricing mechanism and the load

shifting protocols. In this study, a genetic algorithm-based multi-objective

optimization model is developed to generate hourly dynamic Time-of-Use

electricity tariffs and facilitate the decision making in load scheduling. As an

illustrative example, a case study was carried out to examine the effect of

applying demand response for EVs in Beijing, China. With the assumptions

made, the maximum peak load can be reduced by 9.8% and the maximum

customer savings for the EVs owners can reach 11.85%, compared to the

business-as-usual case.
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1 Introduction

Market demand and sales of electric vehicles (EVs) are soaring. There were 11 million

registered EVs on the road worldwide by the end of 2021 (Abdelbaky et al., 2021).

According to the projection, the share of EVs in the European and North American

markets will be around 50% and 30% by 2030, respectively (Rezaeimozafar et al., 2021).

Large-scale electric vehicle charging loads can dramatically change load demand in a short

period of time, which can lead to grid instability and peak demand rise. Reinforcing the

network and expanding capacity could be a possible solution to this problem, but would

require huge capital investments. So using intelligent charging scheduling strategies is a

more economical and feasible approach. A natural way to reduce peak loads is by

controlling the charging power, but this would result in the EVs taking longer to charge

(Chen et al., 2014; Zhang et al., 2018). Authors in (Gjelaj et al., 2017; McKinsey, 2018)
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employed a stationary battery for shifting the load from peak

periods to off-peak periods, which would result in more costs

when building charging stations. Incentivizing customers to

participate in demand response to avoid charging during peak

hours by setting dynamic electricity prices is a more promising

approach for application.

The time-varying-based demand response (DR) programs

refer to prices that vary over the day to indirectly induce

consumers to adjust their energy use patterns following

dynamic electricity prices. For a given protocol, the charging

stations perform DR actions to reduce energy usage during

periods of peak demand, high electricity rates, system

constraints, and/or emergencies. The EV owners can assess

the trade-off between savings in the charging costs by

advancing or postponing the charging action, against the

inconvenience of adjusting their desired time slot (Zheng

et al., 2019). The successful implementation DR approach on

EV owners relies on two initiatives: the incentive dynamic pricing

(DP) mechanism and the load shifting scheme (Zheng et al.,

2021; Genis et al., 2022) as shown in Figure 1.

The DP concept in the retail electricity market refers to price

the electricity dynamically based on the current and forecasted

mismatch between generation and demand. The authors in

(Moghaddam et al., 2019) present a dynamic pricing model to

reduce the overlaps loads between residential and public charging

stations by shifting loads away from the evening peak load hours.

Authors in (Yu et al., 2022) formulate a dynamically updated

price, which includes a discharge incentive reward and charging

expense, based on the peak-to-valley time of use (TOU) tariff.

The DP mechanism has shown great performance in reducing

the peak-valley difference of load and improving the benefits for

the energy consumers (Wang et al., 2019). Reference (Kong et al.,

2022) proposed an optimization model to manage the load in the

distribution system by setting a DP to incentivize electric vehicles

to charge at different locations and times. Reference (Sharma and

Jain, 2019) considered DP has a low acceptance rate by EVs for

being too dynamic to respond and proposed a demand response

model that integrates TOU and DP by clustering dynamic tariffs.

From the perspective of cost saving for car owners, reference

(Zhou et al., 2020) proposed a strategy model of electric vehicle

charging and discharging under DP, which considers the parking

cost and the inconvenience caused by the change of charging end

time of car owners.

With a proper pricing scheme, the load shifting scheme is

usually formulated as a single or multi-objective optimization

problem (MOOP) to optimize the charging schedules or battery

State-of-Charge (SoC), where cost reduction, carbon emissions

reduction, battery lifetime, peak shaving, or renewable energy

consumption are included in the objective functions (Gou et al.,

2021; Yang et al., 2021). To solve a MOOP, broadly used

approaches include genetic algorithm (GA), particle swarm

optimization, and neural network technique (Wang and Singh

2007; Kataoka et al., 2019; Limmer and Rodedmann 2019;

Wenqiang et al., 2021).

Although dynamic pricing has been successfully

implemented in various industries like the gasoline market,

airline companies, and online retail, real-time pricing has not

been widely employed in the retail electricity sector. Most of the

price schemes are Time-of-Use (TOU) tariff-based, which means

the utility company charges more during a certain time of day.

The authors in (Abbasi et al., 2020) consider the aggregator as a

price-maker in the day-ahead market by offering energy price

FIGURE 1
Optimal EV charging with demand response and dynamic pricing schemes.
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bids. A bidding strategy model for the EV aggregator who acts as

a price-maker both in the day-ahead and real-time electricity

market is established in (Gong et al., 2021). Reference (Zhang

et al., 2021) uses the Stackelberg game theory to model the

negotiation process of charging price and determine the

congestion cost that the EV side should be allocated. In most

of the previous works, the energy prices are still set in advance,

and they do not fluctuate on the timescale of hours or minutes

according to demand.

Given the area of dynamic TOU price-based charge

scheduling of EVs is nascent, we make the following

contributions: 1) generate a dynamic pricing profile that can

reflect the demand changes simultaneously and trigger the EV

owners to modify the original charging activity; 2) develop a GA-

based optimization model to find alternative charging windows

that yields the lowest electricity costs and peak-to-valley ratio in

power grid; and 3) evaluate the efficiency and effectiveness of the

proposed DR program.

The rest of this paper is organized as follows. Section 2.1

describes the EV driving and charging behavior model. Section

2.2 introduces the dynamic incentive pricing scheme. The GA-

based optimization formulation is presented in Sections 2.3 and

2.4. Section 3 defines the case study. In Section 4, the simulation

results are presented, and Section 5 concludes.

2 Mathematical models

To better model the EV driving and charging behaviors and

patterns, the EVs are classified into four groups: electric bus,

electric taxi (taxi/uber/lift), business vehicle, and private EV.

Each EV is characterized by six parameters including the vehicle

type, daily driving mileage, battery capacity, charging rate, initial

charging time (the time arrive at the charging station), and the

charging probability.

To generate hourly dynamic Time-of-Use electricity tariffs

and load scheduling commends, a genetic algorithm-based

multi-objective optimization model is described in this section.

2.1 EV behavior model

The daily driving distance of each EV is generated randomly

from the predefined probability density function (PDF), as

shown in Eq. 1. The PDF is generated by data fitting a set of

survey data of the National Household Travel Survey in 2018,

which is sponsored by the US Department of Transportation

(Stats, 2017). Given the daily mileage, the initial SOC0 and the

charging duration TC can be calculated, as shown in Eqs 2,3:

f D s( ) � 1
sσD√2π

exp − lns − μD( )2
2σ2

D
[ ] (1)

SOC0 i( ) � 1 − S i( )
S max

( ) × 100% (2)

TC i( ) � 1 − SOC0 i( )( )Ecap

Prateη
(3)

Where S is the daily mileages (km); μD and σD are the mean value

and the standard deviation, respectively; i is the index for the

EVs; S max is the maximum driving range (km). The charging

duration of EV, TC, is determined by the initial State of Charge

(SOC0), battery capacity (Ecap), charging rate (Prate), and the

charging efficiency (η).

Based on the survey data, the EV charging behaviors are

categorized by the type of EV, charging window, start time,

battery capacity, charging rate, and charging probability. The

electric buses operate on fixed routes on a typical workday. We

assume the electric buses would have two charging windows:

fast charging during the daytime and slow charging at night.

There are four possible charging windows for the electric taxi,

representing the daily shifts (morning, afternoon, evening, and

late night). The charging activities of the business or

commercial vehicles would happen during working hours

and are highly random. For the private EV owners, they are

more likely to charge their cars late at night and early in the

morning.

The key parameters and charging characteristics of the

EVs in this case study are provided in Table 1. The originally

intended arrival time or the earliest time (i.e., before DR)

potentially available for charging each day is generated

randomly from either a normal distribution (N) with an

associated mean and standard deviation or a uniform

distribution (U) with a given range, using the data from

Table 1. The charging probability indicts the probability

that that EV presents at the charging station within that

time window and has the charger plugged in (Liu and Qi,

2014). For example, for this case study (described in Section

3), the electric bus would have a 100% chance to charge

between 9:00 a.m. and 4:00 p.m. at a rate of 90 kW.

2.2 Dynamic price generation model

In this study, a three-tier dynamic pricing system for EV

charging is created based on the amount of electricity used; the

more electricity used, the higher the charge. The first (off-peak)

and second (mid-peak) tiers cover nearly 70% of EV

consumption, and the third tier (on-peak) is charged for

about 30% of electricity use.

To set the real-time pricing, price elasticity of demand, which

is a measurement of the change in energy demand in relation to

the change in utility charges for the electricity, as shown in

Figure 2. It states that with a fixed amount of generation, when

the price falls, the demand rises, and vice versa. The formula for
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calculating the elasticity of demand is expressed by the elasticity

coefficient (Gou et al., 2021):

Ec � zq
zp

� p0
q0

×
dq
dp

� Δq/q
Δp/p

(4)

Where Ec is the demand elasticity of power price; p0 is the initial

price of electricity, q0 is the initial electric energy demand; dp is

the amount of change in price over a time period, dq is the

amount of change in the energy demand; p is the current price,

and q is the current demand.

The EV owner’s decisions or choices on the time of charging

are not only affected by the price of electricity at that moment but

are also correlated with the prices at adjacent moments.

Therefore, the correlation relationship between electricity

demand and electricity price at different periods can be

expressed as:

zq1
q1

zq2
q2
/

zqn
qn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

ε11 / ε1n
..
.

1 ..
.

εn1 / εnn

⎛⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎠

zp1
p1

zp2
p2
/

zpn
pn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� Ec

zp1
p1

zp2
p2
/

zpn
pn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5)

Where zqi(i � 1, 2, . . . , n) and zpi(i � 1, 2, . . . , n) represent the
change in demand and price at the time i,qi and pi represent the

benchmark values of demand and price at the time i. Ec represents

the electricity price elasticity matrix, εij which is the element in Ec.

The amount of load change for each time period is the amount

of change in the current time period in response to the time share

tariff plus the amount of movement from other time periods to this

time period. Therefore, the amount of load change at the moment

before and after the time-of-use tariff with n-dimensional data:

Δqi � ∑n
j�1

εij
qi0
pj0

pj0 − pj[ ]{ } (6)

Where, when i = j, εij is the coefficient of self-elasticity (εij <0),
when i ≠ j, εij is the coefficient of mutual elasticity (εij ≥0), qi0 is
the load at the time i before the tariff change, pj0 is the tariff at the

time j before the tariff change, pj is the tariff at the time j after the

tariff change.

2.3 Optimization formulation

A Multi-objective optimization problem is formulated to

minimize the costs for EV owners and to minimize the peak-

to-valley difference. Decision variables express the hourly price

rate and the new start times for the schedulable EVs. To perform

TABLE 1 The statistical data of EV charging events (Liu and Qi, 2014).

Type of EV Charging window Charging start time Battery capacity (kWh) Charging rate (kW) Charging
probability

Electric bus 9:00-16:00 U (9, 16) 180 90 1

22:00-6:00 N (23, 0.5) 21

Electric taxis 0:00-8:00 N (4, 1.3) 45 45 0.5

8:00-15:00 N (11.5, 1.1)

15:00-19:00 N (16.7, 0.9)

19:00-24:00 N (21.5, 0.9)

Electric business car 19:00-7:00 N (19, 2) 60 7 0.5

Private EV 0:00-5:00 N (1.5, 0.6) 45 7 0.6

5:00-10:00 N (8.2, 6) 0.4

10:00-17:00 U (10, 1.7) 0.4

17:00-24:00 N (19.1, 1.7) 0.6

FIGURE 2
price elasticity of demand.
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the load shifting, a constrained, non-linear, MOOP has been

formulated as

min f 1 x( ), f 2 x( )[ ] (7)

Where f1 and f2 represent the two objectives; the first objective

functionf1 is defined asminimizing the electricity purchasing cost for

the EV owners; the second objective function f2 is designed to avoid

the rebound effect, whichmay occur and create peaks greater than the

original ones. Hence, to mitigate these rebounds in the middle of the

load shifting procedure, the second objective function is for

minimizing the peak-to-valley difference for all the time intervals.

f 1 � min∑T
t�1
∑N
n�1

Eaf ter
EVn,t

πt (8)

f 2 � min∑T
1

Enonev
t +∑N

n�1
Eaf ter
EVn,t

πt − Es,t

–⎛⎝ ⎞⎠2

(9)

Where N is the number of EVs and n is the index of it; T is the

number of investigated time periods and t is the index of it; EEV is the

amount of energy purchased from the utility; π is the real-time

electricity price driven by the demand; Enonev
t is the initial electricity

load without any charging loads; and �Es is the average load over the

studied time period. It is important to note that even though πt

represent the price rate at time t, it does notmean there are 96 distinct

values for the price rate. In this study, one assumption ismade that the

TOU tariff is a three-tiered structure. Therefore, the number of

possible values for πt is three. The optimization problem is

subjected to the following constraints. The total electricity

consumption is the same before and after shifting, without

changing the total daily amount of energy usage within the studied

horizon. Ebefore
EVn,t

and Eafter
EVn,t

denote the total charging load of n EVs in

time period t before and after the implementation of demand

response, respectively. The EV charging load distribution curves

before and after the implementation of demand response are

shown in Figure 7, and by integrating the curves in time period t,

we can obtain the total load in time period t.

∑T
t�1
∑N
n�1

Ebef ore
EVn,t

� ∑T
t�1
∑N
n�1

Eaf ter
EVn,t

(10)

The net increase of the load in a single period should be less

or equal to the maximum charging capacity in the region.

∑N
i�1
Eaf ter
EVn,t

≤Ecap
max f or t � 1, 2, . . . , 96 (11)

To achieve the purpose of peak cutting and valley filling, the

three-tiered dynamic pricing system makes sure the mid-peak

rate (πmid peak) is lower than the on-peak rate (πon peak) and

higher than the off-peak rate (πoff peak). Also, the peak-to-valley

rate is set to be in the range of 3–5.

πof f−peak t( )≤πmid peak t( )≤πon peak t( ) (12)
3≤

rpeak
rvalley

≤ 5 (13)

To avoid the rebound effect, which means a new peak that is

even higher than the original one may occur after the

implementation of the DR program, the new peak must satisfy:

maxi∈N ,t∈M Eaf ter
i t( ) + Enonev

i t( )( )≤maxi∈N ,t∈M Ebef ore
i t( ) + Enonev

i t( )( )
(14)

FIGURE 3
Flowchart of the demand response strategy.
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2.4 Genetic algorithm

A concise description of the GA employed in this study is

described here. The chromosome composition of the genetic

algorithm comprises two segments: the first 96 genes

representing the real-time price vector–one element for each 15-

min interval in the 24-h period; the second segment contains genes

representing the new charging start times for the schedulable EVs.

The initial population of 200 chromosomes is generated

randomly, and each chromosome is evaluated and sorted based

on the fitness function (objective value). The linear bias parameter

is determined based on the size of the population. Crossover selects

genes from parent chromosomes and generates a new offspring.

Within the offspring chromosome, each gene has a mutation

probability of 0.33. The new offspring in the new population

are evaluated and ranked in terms of the objective function value

again, and the worst two chromosomes are eliminated. The newly

generated population is used for the successive iterations of the

algorithm until the stopping criteria of 500 total iterations.

Flowchart of the demand response strategy is shown in

Figure 3. The newly generated population is used for the

successive iterations of the algorithm until the stopping criteria

of 500 total iterations.

FIGURE 4
(A) The probability density of the daily driving distance of EVs in Beijing and the best Log-logistic distribution fit to this probability density; (B) The
probabilities for the time of initial charging during a day.

FIGURE 6
The optimized TOU tariff.

FIGURE 5
The total power consumption over a day by four types of EV
on a typical weekday in Beijing.
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3 Case study set up

The case study is based on the metropolitan area of Beijing, a

region that has the fastest-growingEVmarkets in theworld. The area of

study covers about 16,000 km2 and included 10million inhabitants and

400,000 EVs in 2021. The data used are obtained from the 2021 Beijing

Transportation Development Annual Report (Gou et al., 2021). The

original electricity rates in Beijing are assumed to be flat and cost

1 yuan/kWh. The demand profile for electricity is from a typical

workday in 2020 and was obtained from the local utility company. For

the purpose of computational efficiency, we examine a case with only

40,000 EVs, which constitute 10% of the current EV fleet.

To generation and EV driving and charging profiles and solve the

optimization formulations above, a total of 40,000 Monte Carlo

simulations were conducted to generate a finite number of possible

cases based on the probability distributions of all stochastic parameters.

4 Results

4.1 EV driving and charging patterns

The simulation results of the EV driving and charging patterns

are shown in Figure 4. There is a 50% chance that the Beijing EV

owners drive less than 50 km per day. The daily average driving

distance is also similar to the value provided by the AAA Foundation

for Traffic Safety Survey, which states that on average, Americans

drive 47 km per day. The duck curve in Figure 4B shows that the

initial charging time of EVs peaks around 8 a.m. and 6 p.m., which

indicates that the drivers are more likely to start the charging events

once they arrive at work or get back home fromwork.Moreover, 98%

of the charging events are performed before 10:00 p.m. on workdays.

With the assumptions made in this study, the charging power

drawn from the grid is presented in Figure 5. Electric buses use fast

chargers during the day and the load peak happens around 2:30 p.m.

Most of the electric buses stop operating at late night, therefore, the

charging demand starts to increase again after 9:00 p.m. The daily

load peak of electric taxis is around 4 a.m. The load curve

demonstrates four peaks, which are strongly correlated with the

four working shifts of taxi drivers. During the daytime working

hours, most of the business EVs are either in standbymode or on the

road. Therefore, the charging frequency is low. They tend to charge

initially at 5 p.m., which has a distinct single-peak load shape. The

private EV drivers plugged in more frequently than the other drivers.

The charging load keeps increasing during the daytime till late at

night. This means that even though most private EVs get plugged in

after 5 p.m., the owners do not leave the charger plugged in overnight.

Figure 5 also demonstrates that the power withdrawn by the

private EVs attribute the most to energy consumption. From 6 to

9 p.m., a time when energy use typically ramps up fast as most

people go off duty and have their EV plugged in. The charging

demand is highest at 8 p.m. and the total load profile has separate

morning and evening peaks.

4.2 Real-time pricing generation

Given the charging load and the original price rate, the price

elasticitymatrix can be calculated and is shown inEq 15 (Ruoyu, 2018).

The key to successfully implementing TOU tariffs is aligning rates with

customer demand signals. As shown in Figure 6, the optimized TOU

tariff, which is solved by the NSGA-II algorithm, follows the demand

trend closely. This study assigns a weight factor of 50% to each of

objectives for the selection of solutions. The first tier is set at 0.29 yuan

FIGURE 7
The EV demand profiles before and after the DR.

FIGURE 8
The base load profile and the total load profile before and
after the DR problem.
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($0.04) per kWh, the second at 0.81 yuan ($0.12), and the third at

1.25 yuan ($0.19). The ratio of peak-to-valley rates is 4.31, whichmeets

the constraint set in Section 2.3.

Ec �
−0.6233 0.3241 0.2305
0.3553 −0.6166 0.2216
0.3215 0.3038 −0.6065

⎛⎜⎝ ⎞⎟⎠ (15)

4.3 The effect of demand response.

Figure 7 presents the change in the hourly EV charging loads

before and after the DR approach. The real-time pricing-driven

load shifting reduces the peak load from 654.3 to 590.3 MW,

corresponding to a 9.8% peak reduction from the EV charging

load alone. The real-time price profile has the lowest rate between

11:00 p.m. and 7:00 a.m., therefore, most EV owners would

program their charging events by then.

By combining the commercial and residential hourly load

profiles and the EV charging load profile, Figure 8 demonstrates

the change in the total electricity loads of Beijing before and after the

DR problem. The DR program can potentially reduce the peak load

from18,770 to 18,500MW, corresponding to a 1.4% peak reduction.

This DR outcome occurs because the DR approach depends on real-

time pricing, and the price profile has a valley around 6:00 a.m.

The efficiency and effectiveness of the proposed method are

evaluated by comparing with the case without DR on peak-to-

valley ratio and average daily charging costs (Table 2). Simulation

TABLE 2 simulation results.

Period of time Base load (MW) EV load without DR (MW) EV load with DR (MW) Change ratio

On Peak 18,050 18,770 18,500 −1.44%

Mid Peak 16,188 16,734 16,649 −0.51%

Off Peak 10,900 11,280 11,380 +0.89%

Peak-to-valley ratio 39.61 39.98 38.49 −3.73%

Cost (million Yuan) — 64.70 48.21 −25.49%

FIGURE 9
Sensitivity analysis of the participation rate.
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results show that the proposed algorithm has managed to reduce

the daily cost for the EV owners to 482,146 yuan, from a high of

646,955 yuan for the case without the DR program,

corresponding to a 25.49% cost reduction. The positive or

negative change ratios correspond to an increase or decrease

in the values between the case without or with the DR problem.

As shown in Table 2, the strategy reduces the on-peak and mid-

peak loads by 1.44% and 0.51%, respectively.

Figure 9 shows the load profiles obtained by changing the EV

owner’s participation rate value from 20% to 80%. The

participation rate is defined as the proportion of the EV

owners that are willing to adjust the charging schedules. The

results show that the peak-to-valley difference decreases as the

participation rate increases, which is expected.

The scheduling optimization model was implemented using

MATLAB in the WINDOWS environment on a HUAWEI

MateBook D laptop computer with an Intel i5-7200U CPU

and 2.5 GM RAM. The converge time is 0.72 min.

5 Discussion

The peak-to-valley ratio in the grid and the customer savings

by participating in the proposed DR program confirm that with

the given protocol, proper DR actions can reduce energy usage

during certain periods. The genetic algorithm-based multi-

objective optimization for EV charging rescheduling is feasible

and efficient enough for the case study.

The results presented above are specific to the data,

algorithms, and system used and may not yield comparable

benefits in all scenarios. Nevertheless, the framework is

general and applicable to a wide range of DR environments.

Future research should focus on building a precise predictive

model for the EV charging loads.

6 Conclusions

This study develops an optimization model to find the

optimal TOU tariff rates and hourly schedule for EVs and

analyses the influence of DR programs on the load profiles

and customer cost. The presented model ensures that the

TOU tariff can track the demand trends and that the

optimization results meet the defined constraints. The model

was tested for the city of Beijing with four types of EVs.

The simulation results indicate that the proposed DR helps

transform the electricity system from a one-way, centralized

power network where customers passively receive electricity to

a two-way flow of information where EV owners regularly

contribute to system operations. An optimal EV charging

strategy could potentially attribute to reducing the slope of

system ramps, firming the intermittency of renewable energy

resources, and relieving congestion on the electric grid. It’s

essential to note that the diversity of DR products adds

another level of complexity to the current electricity market.

Advances in smart metering and controlling technology are

required for DR to play a greater, faster, and more diverse

role in addressing the emerging grid needs.
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Nomenclature

Abbreviations

EV electric vehicles

DR demand response

DP dynamic pricing

MOOP multi-objective optimization

SoC state-of-charge

GA genetic algorithm

TOU time-of-Use

PDF probability density function

N normal distribution

U uniform distribution

Indices and Sets

T, t set of time periods, time index

N, i set of EVs, EV index

Parameters

Tc charging duration (h)

S the daily mileages (km)

Smax the maximum driving range (km)

μD the mean value of function

σD the standard deviation of function

SOC0 the initial State of Charge (%)

Ecap battery capacity (kW·h)
Ecap

max the maximum battery capacity range (kW·h)
Prate charging rate (kW)

η charging efficiency (%)

q0 the initial electric energy demand (kW)

p0 the initial price of electricity (yuan)

qi0 the load at the time i before the tariff change (kW)

pj0 the tariff at the time j before the tariff change (yuan)

Variables

pi current price (yuan)

qi current demand (kW)

Ec electricity price elasticity matrix

εij electricity price elasticity factor

EEV the amount of energy purchased from the utility

Enonev initial electricity load without any charging loads (kW)

�ES average load over the studied time period (kW)

Ebefore
EV charging load before DR (kW)

Eafter
EV charging load after DR (kW)

πt real-time electricity price at time t (yuan)

πon_peak on-peak rate (yuan)

πmid_peak mid-peak rate (yuan)

πoff_peak off-peak rate (yuan)
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