72 research outputs found
HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face
Solving complicated AI tasks with different domains and modalities is a key
step toward artificial general intelligence. While there are numerous AI models
available for various domains and modalities, they cannot handle complicated AI
tasks autonomously. Considering large language models (LLMs) have exhibited
exceptional abilities in language understanding, generation, interaction, and
reasoning, we advocate that LLMs could act as a controller to manage existing
AI models to solve complicated AI tasks, with language serving as a generic
interface to empower this. Based on this philosophy, we present HuggingGPT, an
LLM-powered agent that leverages LLMs (e.g., ChatGPT) to connect various AI
models in machine learning communities (e.g., Hugging Face) to solve AI tasks.
Specifically, we use ChatGPT to conduct task planning when receiving a user
request, select models according to their function descriptions available in
Hugging Face, execute each subtask with the selected AI model, and summarize
the response according to the execution results. By leveraging the strong
language capability of ChatGPT and abundant AI models in Hugging Face,
HuggingGPT can tackle a wide range of sophisticated AI tasks spanning different
modalities and domains and achieve impressive results in language, vision,
speech, and other challenging tasks, which paves a new way towards the
realization of artificial general intelligence
Antioxidant and Anti-tyrosinase Activities of Phenolic Extracts from Rape Bee Pollen and Inhibitory Melanogenesis by cAMP/MITF/TYR Pathway in B16 Mouse Melanoma Cells
Rape bee pollen possesses many nutritional and therapeutic properties because of its abundant nutrimental and bioactive components. In this study, free (FPE) and bound (BPE) phenolic extracts of rape bee pollen were obtained, phenolic and flavonoid contents were determined, and composition of phenolic acids was analyzed. In vitro antioxidant and anti-tyrosinase (TYR) activities of FPE and BPE were compared, and inhibitory melanogenesis of FPE was further evaluated. Results showed FPE and BPE contain total phenolic contents of 11.76 and 0.81 mg gallic acid equivalents/g dry weight (DW) and total flavonoid contents of 19.24 and 3.65 mg rutin equivalents/g DW, respectively. Phenolic profiling showed FPE and BPE fractions contained 12 and 9 phenolic acids, respectively. FPE contained the highest rutin content of 774.87 μg/g. FPE and BPE showed the high antioxidant properties in vitro and high inhibitory activities for mushroom TYR. Higher activities of FPE than those of BPE can be attributed to difference in their phenolic compositions. Inhibitory melanogenesis activities of FPE against B16 were further evaluated. Results showed suppressed intracellular TYR activity, reduced melanin content, and promoted glutathione synthesis (p < 0.05) in FPE-treated cells. FPE reduced mRNA expression of TYR, TYR-related protein (TRP)-1 and TRP-2, and significantly suppressed cyclic adenosine monophosphate (cAMP) levels through down-regulation of melanocortin 1 receptor gene expression (p < 0.05). FPE reduced mRNA expression of microphthalmia-associated transcription factor (MITF), significantly inhibiting intracellular melanin synthesis (p < 0.05). Hence, FPE regulates melanogenesis of B16 cells involved in cAMP/MITF/TYR pathway. These results revealed that FPE can be used as pharmaceutical agents and cosmetics to protect cells from abnormal melanogenesis
Microcontact electrochemical etching technique for rapid fabrication of glass-based microfluidic chips
NSFC of China [20675066]; Project of National Basic Research Program of China (973 Program) [2007CB935603]A simple and rapid microfabrication method for glass-based microfluidic chips is presented. In this method, a microcontact electrochemical etching technique is used to pattern the masking metal layer. By applying an anodic potential in the presence of KCl solution, a stamp's configuration can be precisely transferred to the masking layer within 2 min. In contrast to photolithography, the new method does not require clean room facilities and a photolithography machine, and the chemical reagent used is harmless to the environment and the human body. Combined with wet etching and thermal bonding, a microfludic device was fabricated and successfully used for electrophoretic separation of FITC. We anticipate that this fabrication method will bring glass microfluidic chips within the reach of any routine laboratory with minimal facilities. This low cost and high throughput process may also be suitable for mass production of microfluidic devices
Antihypertensive Effect of Long-Term Oral Administration of Jellyfish (Rhopilema esculentum) Collagen Peptides on Renovascular Hypertension
Antihypertensive effect of long-term oral administration of jellyfish (Rhopilema esculentum) collagen peptides (JCP) on renovascular hypertension rats (RVHs) was evaluated. The systolic blood pressure and diastolic blood pressure of the RVHs were significantly reduced with administration of JCP (p < 0.05), compared with model control group. However, the arterial blood pressure of normal rats showed no significant changes during long-term oral treatment with high dose JCP (p > 0.05). Furthermore, effect of JCP on angiotensin II (Ang II) concentration of plasma had no significance (p > 0.05), but JCP significantly inhibited the Ang II concentration in RVHs’ kidney (p < 0.05). The kidney should be the target site of JCP
PMMA/PDMS valves and pumps for disposable microfluidics
Poly(methyl methacrylate) (PMMA) is gaining in popularity in microfluidic devices because of its low cost, excellent optical transparency, attractive mechanical/chemical properties, and simple fabrication procedures. It has been used to fabricate micromixers, PCR reactors, CE and many other microdevices. Here we present the design, fabrication, characterization and application of pneumatic microvalves and micropumps based on PMMA. Valves and pumps are fabricated by sandwiching a PDMS membrane between PMMA fluidic channel and manifold wafers. Valve closing or opening can be controlled by adjusting the pressure in a displacement chamber on the pneumatic layer via a computer regulated solenoid. The valve provides up to 15.4 mu L s(-1) at 60 kPa fluid pressure and seals reliably against forward fluid pressure as high as 60 kPa. A PMMA diaphragm pump can be assembled by simply connecting three valves in series. By varying valve volume or opening time, pumping rates ranging from nL to mL per second can be accurately achieved. The PMMA based valves and pumps were further tested in a disposable automatic nucleic acid extraction microchip to extract DNA from human whole blood. The DNA extraction efficiency was about 25% and the 260 nm/280 nm UV absorption ratio for extracted DNA was 1.72. Because of its advantages of inexpensive, facile fabrication, robust and easy integration, the PMMA valve and pump will find their wide application for fluidic manipulation in portable and disposable microfluidic devices.NSFC [20805038, 20620130427]; MOE [200803841013]; 973 Program of China [2007CB935603, 2010CB732402]; XMU ; NIH [P01 CA077664
Decadal soil carbon accumulation across Tibetan permafrost regions
Acknowledgements We thank the members of Peking University Sampling Teams (2001–2004) and IBCAS Sampling Teams (2013–2014) for assistance in field data collection. We also thank the Forestry Bureau of Qinghai Province and the Forestry Bureau of Tibet Autonomous Region for their permission and assistance during the sampling process. This study was financially supported by the National Natural Science Foundation of China (31670482 and 31322011), National Basic Research Program of China on Global Change (2014CB954001 and 2015CB954201), Chinese Academy of Sciences-Peking University Pioneer Cooperation Team, and the Thousand Young Talents Program.Peer reviewedPostprintPostprin
Effects of Collagen and Collagen Hydrolysate from Jellyfish Umbrella on Histological and Immunity Changes of Mice Photoaging
Jellyfish collagen (JC) was extracted from jellyfish umbrella and hydrolyzed to prepare jellyfish collagen hydrolysate (JCH). The effects of JC and JCH on UV-induced skin damage of mice were evaluated by the skin moisture, microscopic analyses of skin and immunity indexes. The skin moisture analyses showed that moisture retention ability of UV-induced mice skin was increased by JC and JCH. Further histological analysis showed that JC and JCH could repair the endogenous collagen and elastin protein fibers, and could maintain the natural ratio of type I to type III collagen. The immunity indexes showed that JC and JCH play a role in enhancing immunity of photoaging mice in vivo. JCH showed much higher protective ability than JC. These results suggest that JCH as a potential novel antiphotoaging agent from natural resources
- …