74 research outputs found

    The oligopeptide ABC transporter OppA4 negatively regulates the virulence factor OspC production of the Lyme disease pathogen

    Get PDF
    Borrelia burgdorferi sensu lato, the agent of Lyme disease, exists in nature through a complex enzootic life cycle that involves both ticks and mammals. The B. burgdorferi genome encodes five Oligopeptide ABC transporters (Opp) that are predicted to be involve in transport of various nutrients. Previously, it was reported that OppA5 is important for the optimal production of OspC, a major virulence factor of B. burgdorferi. In this study, possible role of another Oligopeptide ABC transporter, OppA4 in ospC expression was investigated by construction of an oppA4 deletion mutant and the complemented strain. Inactivation of oppA4 resulted an increased production of OspC, suggesting that OppA4 has a negative impact on ospC expression. Expression of ospC is controlled by Rrp2-RpoN-RpoS, the central pathway essential for mammal infection. We showed that increased ospC expression in the oppA4 mutant was due to an increased rpoS expression. We then further investigated how OppA4 negatively regulates this pathway. Two regulators, BosR and BadR, are known to positively and negatively, respectively, regulate the Rrp2-RpoN-RpoS pathway. We found that deletion of oppA4 resulted in an increased level of BosR. Previous reports showed that bosR is mainly regulated at the post-transcriptional level by other factors. However, OppA4 appears to negatively regulate bosR expression at the transcriptional level. The finding of OppA4 involved in regulation of the Rrp2-RpoN-RpoS pathway further reinforces the importance of nutritional virulence to the enzootic cycle of B. burgdorferi

    Investigation of ospC Expression Variation among Borrelia burgdorferi Strains

    Get PDF
    Outer surface protein C (OspC) is the most studied major virulence factor of Borrelia burgdorferi, the causative agent of Lyme disease. The level of OspC varies dramatically among B. burgdorferi strains when cultured in vitro, but little is known about what causes such variation. It has been proposed that the difference in endogenous plasmid contents among strains contribute to variation in OspC phenotype, as B. burgdorferi contains more than 21 endogenous linear (lp) and circular plasmids (cp), and some of which are prone to be lost. In this study, we analyzed several clones isolated from B. burgdorferi strain 297, one of the most commonly used strains for studying ospC expression. By taking advantage of recently published plasmid sequence of strain 297, we developed a multiplex PCR method specifically for rapid plasmid profiling of B. burgdorferi strain 297. We found that some commonly used 297 clones that were thought having a complete plasmid profile, actually lacked some endogenous plasmids. Importantly, the result showed that the difference in plasmid profiles did not contribute to the ospC expression variation among the clones. Furthermore, we found that B. burgdorferi clones expressed different levels of BosR, which in turn led to different levels of RpoS and subsequently, resulted in OspC level variation among B. burgdorferi strains

    LtpA, a CdnL-type CarD regulator, is important for the enzootic cycle of the Lyme disease pathogen

    Get PDF
    Little is known about how Borrelia burgdorferi, the Lyme disease pathogen, adapts and survives in the tick vector. We previously identified a bacterial CarD N-terminal-like (CdnL) protein, LtpA (BB0355), in B. burgdorferi that is preferably expressed at lower temperatures, which is a surrogate condition mimicking the tick portion of the enzootic cycle of B. burgdorferi. CdnL-family proteins, an emerging class of bacterial RNAP-interacting transcription factors, are essential for the viability of Mycobacterium tuberculosis and Myxococcus xanthus. Previous attempts to inactivate ltpA in B. burgdorferi have not been successful. In this study, we report the construction of a ltpA mutant in the infectious strain of B. burgdorferi, strain B31-5A4NP1. Unlike CdnL in M. tuberculosis and M. xanthus, LtpA is dispensable for the viability of B. burgdorferi. However, the ltpA mutant exhibits a reduced growth rate and a cold-sensitive phenotype. We demonstrate that LtpA positively regulates 16S rRNA expression, which contributes to the growth defects in the ltpA mutant. The ltpA mutant remains capable of infecting mice, albeit with delayed infection. Additionally, the ltpA mutant produces markedly reduced spirochetal loads in ticks and was not able to infect mice via tick infection. Overall, LtpA represents a novel regulator in the CdnL family that has an important role in the enzootic cycle of B. burgdorferi

    DhhP, a Cyclic di-AMP Phosphodiesterase of Borrelia burgdorferi, Is Essential for Cell Growth and Virulence

    Get PDF
    Cyclic di-AMP (c-di-AMP) is a recently discovered second messenger in bacteria. Most of work on c-di-AMP signaling has been done in Gram-positive bacteria, firmicutes, and actinobacteria, where c-di-AMP signaling pathways affect potassium transport, cell wall structure, and antibiotic resistance. Little is known about c-di-AMP signaling in other bacteria. Borrelia burgdorferi, the causative agent of Lyme disease, is a spirochete that has a Gram-negative dual membrane. In this study, we demonstrated that B. burgdorferi BB0619, a DHH-DHHA1 domain protein (herein designated DhhP), functions as c-di-AMP phosphodiesterase. Recombinant DhhP hydrolyzed c-di-AMP to pApA in a Mn2+- or Mg2+-dependent manner. In contrast to c-di-AMP phosphodiesterases reported thus far, DhhP appears to be essential for B. burgdorferi growth both in vitro and in the mammalian host. Inactivation of the chromosomal dhhP gene could be achieved only in the presence of a plasmid-encoded inducible dhhP gene. The conditional dhhP mutant had a dramatic increase in intracellular c-di-AMP level in comparison to the isogenic wild-type strain. Unlike what has been observed in Gram-positive bacteria, elevated cellular c-di-AMP in B. burgdorferi did not result in an increased resistance to ÎČ-lactamase antibiotics, suggesting that c-di-AMP's functions in spirochetes differ from those in Gram-positive bacteria. In addition, the dhhP mutant was defective in induction of the σS factor, RpoS, and the RpoS-dependent outer membrane virulence factor OspC, which uncovers an important role of c-di-AMP in B. burgdorferi virulence

    HtrA, a Temperature- and Stationary Phase-Activated Protease Involved in Maturation of a Key Microbial Virulence Determinant, Facilitates Borrelia burgdorferi Infection in Mammalian Hosts

    Get PDF
    High-temperature requirement protease A (HtrA) represents a family of serine proteases that play important roles in microbial biology. Unlike the genomes of most organisms, that of Borrelia burgdorferi notably encodes a single HtrA gene product, termed BbHtrA. Previous studies identified a few substrates of BbHtrA; however, their physiological relevance could not be ascertained, as targeted deletion of the gene has not been successful. Here we show that BbhtrA transcripts are induced during spirochete growth either in the stationary phase or at elevated temperature. Successful generation of a BbhtrA deletion mutant and restoration by genetic complementation suggest a nonessential role for this protease in microbial viability; however, its remarkable growth, morphological, and structural defects during cultivation at 37°C confirm a high-temperature requirement for protease activation and function. The BbhtrA-deficient spirochetes were unable to establish infection of mice, as evidenced by assessment of culture, PCR, and serology. We show that transcript abundance as well as proteolytic processing of a borrelial protein required for cell fission and infectivity, BB0323, is impaired in BbhtrA mutants grown at 37°C, which likely contributed to their inability to survive in a mammalian host. Together, these results demonstrate the physiological relevance of a unique temperature-regulated borrelial protease, BbHtrA, which further enlightens our knowledge of intriguing aspects of spirochete biology and infectivity

    Immune Checkpoint Axes Are Dysregulated in Patients With Alcoholic Hepatitis

    Get PDF
    Alcoholic hepatitis (AH) is a severe inflammatory liver disease that develops in some heavy drinkers. The immune system in patients with AH is hyperactive and yet dysfunctional. Here, we investigated whether this immune‐dysregulated state is related to the alcoholic impact on immune checkpoints (ICPs). We used multiplex immunoassays and enzyme‐linked immunosorbent assay to quantify plasma levels of 18 soluble ICPs (sICPs) from 81 patients with AH, 65 heavy drinkers without liver diseases (HDCs), and 39 healthy controls (HCs) at baseline, 33 patients with AH and 32 HDCs at 6‐month follow‐up, and 18 patients with AH and 29 HDCs at 12‐month follow‐up. We demonstrated that baseline levels of 6 sICPs (soluble T‐cell immunoglobulin and mucin domain 3 [sTIM‐3], soluble cluster of differentiation [sCD]27, sCD40, soluble Toll‐like receptor‐2 [sTLR‐2], soluble herpesvirus entry mediator [sHVEM], and soluble lymphotoxin‐like inducible protein that competes with glycoprotein D for herpes virus entry on T cells [sLIGHT]) were up‐regulated, while 11 sICPs (soluble B‐ and T‐lymphocyte attenuator [sBTLA], sCD160, soluble cytotoxic T‐lymphocyte‐associated protein 4 [sCTLA‐4], soluble lymphocyte‐activation gene 3 [sLAG‐3], soluble programmed death 1 [sPD‐1], sPD ligand 1 [sPD‐L1], sCD28, soluble glucocorticoid‐induced tumor necrosis factor receptor‐related protein [sGITR], sGITR ligand [sGITRL], sCD80, and inducible T‐cell costimulator [sICOS]) were down‐regulated in patients with AH compared to HDCs. The up‐regulated sICPs except sLIGHT and down‐regulated sCD80, sCD160, sCTLA‐4, and sLAG‐3 correlated positively or negatively with AH disease severity, bacterial translocation, and inflammatory factors. At follow‐up, abstinent patients with AH still had higher levels of several sICPs compared to HDCs. We also compared expression of 10 membrane‐bound ICPs (mICPs) on peripheral blood mononuclear cells (PBMCs) from patients with AH and HCs by flow cytometry and found that several mICPs were dysregulated on blood cells from patients with AH. The function and regulation of sICPs and mICPs were studied using PBMCs from patients with AH and HCs. Recombinant sHVEM affected tumor necrosis factor (TNF)‐α and interferon‐γ production by T cells from patients with AH and HCs. Conclusion: Both sICPs and mICPs were dysregulated in patients with AH, and alcohol abstinence did not fully reverse these abnormalities. The HVEM axis plays a role in regulating T‐cell function in patients with AH

    Role of HK2 in the Enzootic Cycle of Borrelia burgdorferi

    Get PDF
    The two-component response regulator Rrp2 is a key activator controlling the production of numerous virulence factors of Borrelia burgdorferi, the Lyme disease pathogen. Previously it was shown that the cognate histidine kinase HK2 is not required for Rrp2 activation in vitro, nor for mammalian infection upon needle inoculation, raising the question whether HK2 has any role in the enzootic cycle of B. burgdorferi. In this study, we demonstrated that HK2 is not required for spirochetal survival in the tick vector. When fed on naive mice, the hk2 mutant had reduced infectivity through the route of tick bite, suggesting that the spirochetes lacking HK2 had a disadvantage in the enzootic cycle. Furthermore, overexpression of hk2 reduced the level of Rrp2 phosphorylation, suggesting that HK2 can function as a phosphatase to dephosphorylate Rrp2. Strains overexpressing hk2 impaired the expression of RpoN regulon whose activation is dependent on Rrp2 phosphorylation and activation, and had reduced infectivity in mice. Taken together, these results demonstrate that although HK2 does not play an essential role in Rrp2 activation, it is important for the optimal fitness of B. burgdorferi in the enzootic cycle

    Specificity for the correlation between the body surface and viscera in the pathological state of COPD: A prospective, controlled, and assessor-blinded trial

    Get PDF
    Background: The association between the body surface and viscera remains obscure, but a better understanding of the body surface-viscera correlation will maximize its diagnostic and therapeutic values in clinical practice. Therefore, this study aimed to investigate the specificity of body surface-viscera correlation in the pathological state.Methods: The study subjects included 40 participants with chronic obstructive pulmonary disease (COPD) in the COPD group and 40 age-matched healthy participants in the healthy control group. Laser Doppler flowmetry, infrared thermography, and functional near-infrared spectroscopy were respectively adopted to measure 1) the perfusion unit (PU), 2) temperature, and 3) regional oxygen saturation (rSO2) of four specific sites distributed in the heart and lung meridians. These three outcome measures reflected the microcirculatory, thermal, and metabolic characteristics, respectively.Results: Regarding the microcirculatory and thermal characteristics of the body surface, the PU and temperature of specific sites on the body surface [i.e., Taiyuan (LU9) and Chize (LU5) in the lung meridian] in the COPD group were significantly increased compared with healthy controls (p < 0.05), whereas PU and temperature of other sites in the heart meridian [i.e., Shenmen (HT7) and Shaohai (HT3)] did not change significantly (p > 0.05). Regarding the metabolic characteristics, rSO2 of specific sites in the lung meridian [i.e., Taiyuan (LU9) and Chize (LU5)] and Shaohai (HT3) of the heart meridian in the COPD group was significantly decreased compared with healthy controls (p < 0.01), whereas rSO2 of Shenmen (HT7) in the heart meridian did not change significantly (p > 0.05).Conclusion: In the disease state of COPD, the microcirculatory, thermal, and metabolic characteristics of specific sites on the body surface in the lung meridian generally manifest more significant changes than those in the heart meridian, thereby supporting relative specificity for the body surface-viscera correlation in the pathological state
    • 

    corecore