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ABSTRACT 

Borrelia burgdorferi sensu lato, the agent of Lyme disease, exists in nature through a complex 

enzootic life cycle that involves both ticks and mammals. The B. burgdorferi genome encodes five 

Oligopeptide ABC transporters (Opp) that are predicted to be involve in transport of various nutrients. 

Previously, it was reported that OppA5 is important for the optimal production of OspC, a major virulence 

factor of B. burgdorferi. In this study, possible role of another Oligopeptide ABC transporter, OppA4 in 

ospC expression was investigated by construction of an oppA4 deletion mutant and the complemented 
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strain. Inactivation of oppA4 resulted an increased production of OspC, suggesting that OppA4 has a 

negative impact on ospC expression. Expression of ospC is controlled by Rrp2-RpoN-RpoS, the central 

pathway essential for mammal infection. We showed that increased ospC expression in the oppA4 mutant 

was due to an increased rpoS expression. We then further investigated how OppA4 negatively regulates 

this pathway. Two regulators, BosR and BadR, are known to positively and negatively, respectively, 

regulate the Rrp2-RpoN-RpoS pathway. We found that deletion of oppA4 resulted in an increased level 

of BosR. Previous reports showed that bosR is mainly regulated at the post-transcriptional level by other 

factors. However, OppA4 appears to negatively regulate bosR expression at the transcriptional level. The 

finding of OppA4 involved in regulation of the Rrp2-RpoN-RpoS pathway further reinforces the 

importance of nutritional virulence to the enzootic cycle of B. burgdorferi.  
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INTRODUCTION 

 

B. burgdorferi sensu lato, the Lyme disease/borreliosis pathogen, is maintained in nature in an 

enzootic cycle between Ixodes tick vectors and certain vertebrates, so-called reservoir hosts (Lane et al., 

1991; Radolf et al., 2012). This spirochetal pathogen dramatically regulates its gene expression during its 

transition between ticks and the reservoir hosts (for recent reviews, see Caimano et al., 2016; Samuels, 

2011; Stevenson and Seshu, 2017; Ye et al., 2016). During the process of transmission, spirochetes in the 

midgut of nymphal ticks begin replication triggered by tick blood meal engorgement process, activate a 
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two-component response regulator and enhancer-binding protein Rrp2, which in turn, activates the 

alternative sigma factor RpoN (N), leading to the transcription of rpoS that encodes for another alternative 

sigma factor and global regulator RpoS (S). This Rrp2-RpoN-RpoS pathway controls production of a 

few of surface proteins that have been shown to be important for mammalian infection (e.g., OspC, 

DbpA/B, BBK32, BBA33, BBA64, BBA66, etc), concomitant with downregulating several factors 

important for spirochetal colonization in ticks (e.g., OspA, P22, lp6.6) (for review and initial discoveries 

of this pathway, see Caimano et al., 2016; Hübner et al., 2001; Radolf et al., 2012; Samuels, 2011; Yang 

et al., 2003). On the other hand, this pathway is repressed in the tick midgut during the process of tick 

acquisition of spirochetes (i.e., spirochetes migrate from infected vertebrate hosts to uninfected ticks), 

with downregulation of mammalian infection-associated proteins while upregulation of proteins important 

for tick colonization (Ouyang et al., 2008; Radolf et al., 2012).  

Given the importance of the Rrp2-RpoN-RpoS pathway, many signals and factors have shown to 

regulate rpoS expression. rpoS has a 54-type promoter, whose expression is under the control of Rrp2 

and RpoN (54) and. In addition, a Fur/PerR-like transcription factor, BosR, is also required for rpoS and 

ospC expression (Hyde et al., 2009; Ouyang et al., 2011; Ouyang et al., 2009; Wang et al., 2017). BosR 

is capable of binding to the promoter region of rpoS in vitro, the mechanism of how BosR is involved in 

activating rpoS transcription from a 54 promoter remains unclear (Hyde et al., 2009; Ouyang et al., 2011; 

Ouyang et al., 2009; Wang et al., 2017). Another transcription factor, BadR, directly represses rpoS 

expression (Miller et al., 2013; Ouyang and Zhou, 2015). Additional factors, including DsrA (Lybecker 

and Samuels, 2007), Rrp1 and PlzA (He et al., 2014; Rogers et al., 2009; Sze et al., 2013), BtmA (Troxell 

et al., 2013), SodA (Esteve-Gassent et al., 2015), BBD18 (Dulebohn et al., 2014), are also shown to 

influence rpoS and ospC expression (for review, see Samuels, 2011; Stevenson and Seshu, 2017). 
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However, what signal(s) B. burgdorferi senses and how the signals feed into this pathway, are largely 

unknown.   

B. burgdorferi has a reduced genome and lacks many biosynthetic pathways for amino acids and 

other essential nutrients, and thus relies on transporters to obtain nutrients from vertebrate and tick hosts 

(Casjens et al., 2000; Fraser et al., 1997; Groshong et al., 2017; Radolf et al., 2012). The oligopeptide 

permease (Opp) transporter system is an efficient system for bacteria to transport multiple amino acids 

(Garai et al., 2017; H., 2010). It consists of an oligopeptide-binding protein (OppA), a membrane permease 

(OppBC), and a nucleotide-binding domain (NBD) protein (OppDF) (Garai et al., 2017; Monnet, 2003). 

B. burgdorferi has five OppA proteins (OppA1 to OppA5), two OppBC permeases, and one OppDF (Bono 

et al., 1998; Raju et al., 2011; Wang et al., 2004). oppA1-oppA3, oppB1, oppC1, oppD, oppF are linked 

together and located in the chromosome, and oppB2-oppC2 are located at different loci of the 

chromosome. Two additional oligopeptide-binding proteins oppA4 and oppA5, encode on the endogenous 

plasmids cp26 and lp54, respectively (Bono et al., 1998; Fraser et al., 1997; Groshong et al., 2017). 

Previous studies using the Escherichia coli as a surrogate system showed that the OppA systems of B. 

burgdorferi can import small peptides in E. coli, and the specificity of peptide binding for OppA1, OppA2, 

and OppA3 were determined (Lin et al., 2001; Wang et al., 2004). All five OppA proteins have conserved 

residues for structure folding and peptide binding found in other OppA proteins (Lin et al., 2001; Wang 

et al., 2004). Sequence analysis indicates that OppA4 and OppA5 cluster together, OppA1 and OppA3 

form another group, and OppA2 forms its own clade (Groshong et al., 2017). Recently, the structures of 

five OppA proteins of B. burgdorferi were analyzed based on the crystal structure of OppA4 (Fairman JW 

et al., 2012; Groshong et al., 2017), suggesting that OppA2 and OppA4 likely bind to negatively charged 

peptides, OppA2 and OppA5 prefer positively charged peptides, and OppA3 may bind a neutral peptides 

(Groshong et al., 2017).  
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The oppA genes of B. burgdorferi were differentially regulated by environmental conditions as 

well as during the enzootic cycle of B. burgdorferi (Troy et al., 2016; Drecktrah et al., 2015; Groshong et 

al., 2017; Iyer et al., 2015; Medrano et al., 2007; Wang et al., 2002). oppA1 and oppA3 are expressed in 

the feeding tick, and oppA2 is expressed at relatively high levels throughout the enzootic cycle (Groshong 

et al., 2017). The two plasmid-coded oppA genes, oppA4 and oppA5, are the most differentially expressed: 

oppA5 is preferably expressed in mammalian host condition, whereas oppA4 is expressed ticks during the 

larval and nymphal blood meals (Groshong et al., 2017; Wang et al., 2002). oppA5 expression is positively 

regulated by the Rrp2-RpoN-RpoS pathway, but not other oppA genes (Medrano et al., 2007). Targeted 

mutagenesis showed that inactivation of oppA5 impaired expression of rpoS and ospC (Raju et al., 2011), 

but did not affect mammalian infection. However, whether OppA4 influences virulence gene expression 

and whether it plays a role in the enzootic cycle of B. burgdorferi have not been determined. In this study, 

we report targeted inactivation of oppA4 and the complemented strain, and studied its influence on the 

Rrp2-RpoN-RpoS pathway and the mammalian infection.  
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MATERIALS AND METHODS 

 

Bacterial strains 

All strains and plasmids used in this study are described in Table 1. Low–passage, virulent B. burgdorferi 

strain 5A18NP1 was kindly provided by Drs. Norris and Kawabata (Kawabata et al., 2004). B. burgdorferi 

were cultivated in Barbour-Stoenner-Kelly (BSK-II) medium supplemented with 6% normal rabbit serum 

(Pel-Freez Biologicals, Rogers, AR) at 37°C with 5% CO2.  Relevant antibiotics were added to the cultures 

at the following final concentrations: 300 µg/ml for kanamycin (Kan), 50 µg/ml for streptomycin (Strep), 

and 50 µg/ml for gentamicin (Gent). The constructed suicide vectors and shuttle vector were maintained 

in Escherichia coli strain DH5. 

 

Construction of the oppA4 deletion mutant 

To inactivate oppA4 gene in 5A18NP1, a suicide vector pZB020 was constructed for homologous 

recombination as following: the regions of DNA corresponding to 1.1 kb upstream and 1.5 kb downstream 

regions of oppA4 were PCR amplified from 5A18NP1 genomic DNA with primer pair 

PRBB067/PRBB068 and PRBB049/PRBB050 (Table 1), respectively.  The resulting PCR fragments 

were cloned into pMP025 and confirmed by restriction enzyme digestion and sequencing. Firstly, pMP025 

and the fragment amplified by PRBB067/PRBB068 were digested by ApaI and SalI and ligated to generate 

pZB020A. Then, pZB020A and the fragment amplified by PRBB049/PRBB050 were digested by XmaI 

and BamHI and ligated. pZB020 was constructed and confirmed by both restriction enzyme digestion and 

sequencing, then it is used for transformation. Transformants were selected with Kan and Strep, and twelve 
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positive clones were obtained. PCR analysis was used to confirm correct marker insertion and inactivation 

of the chromosomal copy of oppA4.  Endogenous plasmid profiles were performed as previously described 

(Bunikis et al., 2011; Xiang et al., 2017; Ye et al., 2014).  The positive clones were named BBZB014.  

 

Construction of the oppA4 complemented strain.    

To complement oppA4 in BBZB014, we constructed a shuttle vector, pZB028, that harbors a wild-type 

oppA4 gene (with a human influenza virus hemagglutinin [HA] tag at the 5’ end of the coding region) 

driven by flaB promoter. Wide-type oppA4 with a HA-tag was amplified by PRBB034/PRBB056 and 

digested by NdeI and PstI, the resulting fragment was ligated into pYY025, which harbors a flgB promoter 

(flaBp)-aadA cascade (streptomycin-resistant gene), resulting in pZB028A. The positive clones were 

identified by restriction enzyme digestion and sequencing. Then pZB028A was digested by BglII and 

AatII to remove flgBp-aadA (streptomycin-resistant gene) and ligated with flgBp-aacC1 (gentamicin-

resistant gene) digested by BglII and AatII. To get rid of BglII cutting site in aacC1, we introduced a point 

mutation to change BglII cutting site from AGATCT to AAATCT without change of amino acid sequence 

by overlap PCR. To make this, we use pYY020 as template and amplify flgBp-partial aacC1 and the rest 

partial aacC1 by PRYY049/PRBB053, PRBB052/PRYY056, respectively. And the whole flgBp-aacC1 

without BglII was amplified by PRYY049 and PRYY056 using the two fragments amplified above. The 

new flgBp-aacC1 without BglII was ligated into pZB028A, resulting in pZB028. Positive clones were 

confirmed by restriction enzyme digestion and sequencing. Then pZB028 was transformed to BBZB014 

for complementation. Complemented strains were selected by Kanamycin, Streptomycin and Gentamicin. 

Positive clones were analyzed by PCR, SDS-PAGE and immunoblotting and named as BBZB018.   
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SDS-PAGE and immunoblotting.   

SDS-PAGE and immunoblotting were performed as previously described (Troxell et al., 2013). The 

images were developed using chemiluminescent method (Pierce ECL Western Blotting Substrate, Thermo 

Scientific, IL). All proteins were separated on 12.5% SDS-PAGE.  Spirochetes were collected at both 

early phase and late-log phase for immunoblotting. Antibodies directed against BosR, RpoS, BadR, OspC 

and FlaB have been described previously (Xu et al., 2010).   

 

RNA isolation and quantitative RT-PCR 

Total RNA was isolated using the TRIzol reagent (Invitrogen) according to the manufacturer’s instructions. 

To reduce trace amounts of DNA contamination, samples were further digested with RNase-free DNaseI 

(Qiagen), and purified using the RNeasy kit (Qiagen). DNA-free RNA was confirmed by PCR. cDNA 

was generated using the SuperScript III First-Strand Synthesis System according to the manufacturer’s 

protocol (Invitrogen). Real-time quantitative PCR was performed using the RT2 SYBR Green ROX qPCR 

Mastermix (Qiagen) on an ABI 7000 sequence detection system. As previously described (Yang et al., 

2009), changes in gene expression level were analyzed through relative quantification method (ΔΔCT) 

using flaB of B. burgdorferi for normalization. Statistical analysis of the data were performed using an 

unpaired, two-tailed Student’s t-test, in which statistical significance was determined when P < 0.05. 

 

Mouse infection. All mouse experiments were approved by the IACUC committee of Indiana University 

School of Medicine under the protocol number # 11339 MD/R/USDA/HZ/AR. Four-week-old C3H/HeN 

mice (Harlan, Indianapolis, IN) were subcutaneously inoculated with 1×105 spirochetes. Ear punch was 

done 4 weeks after infection and cultivated in 2 ml of the BSK-II medium (Sigma-Aldrich, St. Louis, MO) 

containing an antibiotic mixture of phosphomycin (2 mg/ml), rifampin (5 mg/ml), and amphotericin B 
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(250 mg/ml) (Sigma-Aldrich). All cultures were maintained at 37oC and examined for the presence of 

spirochetes by dark-field microscopy beginning from 5 days after inoculation.  Mouse infection was 

determined by positive growth of ear punch culture. 
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RESULTS 

 

Construction of the oppA4 mutant and complemented strain 

The oppA4 mutant was generated by allele exchange via homologous recombination by transforming a 

suicide vector (pZB020) carrying aadA (Strep-resistant cassette) flanked by 1.1 kb upstream and 1.5 kb 

downstream regions of oppA4 into an infectious B. burgdorferi strain B31-5A18NP1 (Fig. 1A). Twelve 

positive clones were obtained and PCR analysis was performed to confirm that oppA4 was replaced by 

the aadA marker (Fig. 1C). The oppA4 mutant was designated OppA4-Mut. For complementation, a 

shuttle vector containing a flaB-driven oppA4 gene (pZB028, Fig. 1B) was transformed with the oppA4 

mutant. Positive clones were confirmed by PCR (Fig. 1C), and the complemented strain was designated 

OppA4-Com. qRT-PCR analysis showed that the oppA4 mutant lost oppA4 expression (Fig. 1D). The 

complemented strain showed much higher oppA4 expression level, as the result of the flaB promoter (Fig. 

1D). Endogenous plasmid profiles were examined, and one clone of the oppA4 mutant and the 

complemented strain with identical plasmid contents with the parental strain was chosen for further study 

(Fig. 2).  

 

Inactivation of oppA4 increased the OspC level 

The oppA4 mutant had similar growth rate in vitro as that of parental strain (data not shown). To examine 

the effect of oppA4 deletion on protein profile of B. burgdorferi, spirochetes were grown in the BSK-II 

medium at 37oC, and harvested at the mid-logarithmic phase (M, 1 X 107 cells/ml, M) and stationary phase 

(S, 5 X 108 cells/ml) (Fig. 3). As expected, wild-type B. burgdorferi did not have visible OspC production 

on SDS-PAGE gel at the mid-log phase, but readily detected at the stationary phase (Fig. 3). In contract, 

the oppA4 mutant showed readily visible OspC production even at the mid-log phase, and the level of 
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OspC was further increased at the stationary phase (Fig. 3).  Enhanced OspC levels in the oppA4 mutant 

in both mid-log and stationary phase spirochetes were more apparent in the immunoblot assay using 

monoclonal antibody against OspC (Fig. 4). Noted that 50-fold less samples were loaded for 

immunoblotting than that used for SDS-PAGE gel because of high levels of OspC. Further qRT-PCR 

analysis demonstrated that the enhanced OspC production in the oppA4 mutant occurred at the 

transcription level (Fig. 5). Complementation restored the OspC pattern close that in wild-type spirochetes 

(Fig. 4 & 5). These data suggest that OppA4 negatively regulates ospC expression.  

 

Inactivation of oppA4 increased the RpoS and BosR levels 

ospC has an RpoS-type promoter and its expression is under the direct control of RpoS (Hübner et al., 

2001; Lybecker and Samuels, 2007; Yang et al., 2005). Accordingly, expression of rpoS at mRNA and 

protein levels were examined. The result showed that the oppA4 mutant had increased levels of rpoS 

expression at both mRNA (~8 folds) and protein levels (~50 folds) (Fig. 4 & 5). As an initial attempt to 

understand how OppA4 negatively regulates rpoS and subsequently ospC expression, we investigated the 

known factors involved in the Rrp2-RpoN-RpoS pathway.  Specifically, we focused on two major factors 

BosR and BadR. BosR positively regulates rpoS expression, while BadR negatively regulates rpoS 

expression. The result showed that the BosR level, not BadR, was upregulated in the oppA4 mutant in 

spirochetes harvested at both mid-log and stationary phases (Fig. 4), suggesting that OppA4 down-

regulates rpoS and ospC expression via BosR.  

 

OppA4 negatively regulates bosR at the transcriptional level 

The BosR level is often regulated at the post-transcription level (Hyde et al., 2007; Troxell et al., 

2013). Transcriptional regulation of bosR was also reported previously (He et al., 2014; Ouyang and Zhou, 
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2015). Thus, levels of bosR mRNA were determined in the oppA4 mutant.  As shown in Fig. 5, there was 

a significant increase in bosR mRNA levels in the oppA4 mutant in comparison to wild-type and the 

complemented strains.  This result indicates that OppA4 negatively regulates bosR at transcriptional level.   

 

OppA4 is not essential for mammalian infection.   

To examine the oppA4 mutant’s ability to infect mice, groups of C3H/HeN mice were needle inoculated 

with wild-type, the oppA4 mutant, or the complemented strain with a dose of 1×105 spirochetes per mouse. 

Ear punch biopsies were collected 4 weeks post-infection and then cultured for presence of spirochetes. 

As shown in Table 2, all mice inoculated with wild-type B. burgdorferi were culture-positive. Four out 

of five mice infected with the oppA4 mutant showed culture positive. Since the complemented strain also 

had the same number of mice infected, this minor difference in infection was not related to oppA4 

inactivation. These data suggested that OppA4 is not essential for B. burgdorferi to establish infection in 

mice.   
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DISCUSSION 

 

 In this study, we successfully constructed an oppA4 deletion mutant and the complemented strain 

in B. burgdorferi. These results showed that the oppA4 mutant showed increased ospC expression via 

influencing BosR and RpoS levels. These data are different from previous findings for OppA5, another 

substrate-binding protein, in which deletion of oppA5 resulted in an impaired activation of the Rrp2-

RpoN-RpoS pathway (Raju et al., 2011). These observations indicate that although they all involve in 

acquiring amino acids from either tick or vertebrate hosts, effects of OppA1 to OppA5 on the Rrp2-RpoN-

RpoS pathway are different. This is consistent with the observations that expressions of each oppA genes 

are different in the enzootic cycle of B. burgdorferi (Groshong et al., 2017; Wang et al., 2002). 

The findings of Opp transporter systems influencing virulence gene expression of B. burgdorferi 

from this and previous studies highlight the important role of nutrients in regulating bacterial virulence, 

which represents one aspect of the concept of “nutritional virulence” (Garai et al., 2017; Kwaik and 

Bumann, 2013). During tick feeding, a flux of blood meals provides rich nutrient conditions that allows 

the most robust replication of B. burgdorferi in the tick midgut (de Silva and Fikrig, 1995; Schwan and 

Piesman, 2000). Thus, it is the spirochete’s advantage to sense such change in nutritional conditions as a 

signal for triggering virulence gene expression. In this regard, we and other showed that metals are 

important signals for regulating B. burgdorferi virulence gene expression (Troxell and Yang, 2013; 

Troxell et al., 2013; Wang et al., 2017). Pyruvate, a key molecule in the central metabolic pathway could 

help B. burgdorferi, an organism that lacks catalase, defensing against H2O2 (Troxell et al., 2014). More 

importantly, we and others showed that acetyl phosphate, an intermediate molecule of AckA-Pta pathway 

that B. burgdorferi employs to synthesize the essential molecule, acetyl-coA, from acetate, contributes to 

the activation of the Rrp2-RpoN-RpoS pathway (Raju et al., 2011; Van Laar et al., 2012; Xu et al., 2010). 
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Recent data showed that during in vitro cultivation conditions, the AckA-Pta pathway is not essential for 

the activation of the Rrp2-RpoN-RpoS pathway (Richards et al., 2016). Such finding suggests that 

multiple mechanisms are present for Rrp2 phosphorylation, but this study does not dispute the data from 

earlier studies showing that acetate and acetyl phosphate play an important role in the activation of the 

Rrp2-RpoN-RpoS pathway during tick feeding (Xu et al., 2010). All these data support the notion that 

nutritional factor is one of the key player in regulating virulence gene expression of B. burgdorferi. 

The Rrp2-RpoN-RpoS pathway is repressed when spirochetes migrate to the tick midgut from the 

vertebrate host (for review, see Radolf et al., 2012; Samuels, 2011). The signaling pathway that leads to 

this repression remains largely unknown. BadR is the repressor of rpoS, and it was proposed that 

phosphorylated sugar may be one of the signals (Miller et al., 2013). We previously showed that the metal 

ion manganese (Mn2+) represses rpoS expression while zinc (Zn2+) enhances rpoS expression. Recently, 

Wang et al., reported that another transition metal, copper (Cu2+) also plays a represses rpoS expression 

via inhibiting BosR binding to DNA.  Given that oppA4 is expressed ticks during the larval and nymphal 

blood meals (Groshong et al., 2017; Wang et al., 2002), and inactivation of oppA4 leads to increased 

activation of the Rrp2-RpoN-RpoS pathway, we postulate that the ligand that OppA4 transports may be a 

cue to downregulates the Rrp2-RpoN-RpoS pathway during the acquisition phase of the enzootic cycle of 

B. burgdorferi. 

Several regulators were known to regulate rpoS and subsequently, ospC expression in B. 

burgdorferi (Radolf et al., 2012; Samuels, 2011; Stevenson and Seshu, 2017). In this study, we only 

examined two major transcription factors, BosR and BadR, and uncovered that the OppA4 negatively 

regulates the rpoS and ospC levels via alteration of bosR expression. Note that the complemented strain 

had lower levels of bosR than that of wild-type strain (Fig. 5). This is likely due to the high level of 

constitutive expression of oppA4 driven by the flaB promoter in the complemented strain. We did not 
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examine the level of rrp2 and rpoN in the oppA4 mutant, as activation of rpoS by Rrp2 and RpoN is 

controlled by phosphorylation of Rrp2. We and others recently showed that under the in vitro cultivation 

conditions, Rrp2 phosphorylation appears to be constitutive, as Rrp2 phosphorylation is vital for B. 

burgdorferi replication (Groshong et al., 2012; Ouyang and Zhou, 2016; Yin et al., 2016). How OppA4 

negatively regulates bosR expression warrants further investigation.  

 In this study, we showed that the oppA4 mutant is capable of infecting mice via needle infection, 

indicating that OppA4 is not essential for mammalian infection. It remains possible that the oppA4 mutant 

has reduced infectivity. Performing ID50 experiment or competition assay by co-infection wild-type B. 

burgdorferi are needed to determine whether OppA4 contributes partially to mammalian infection of B. 

burgdorferi. Furthermore, whether OppA4 is required for mammalian infection via tick bite remains to be 

determined. If OppA4 plays a role in the tick vector, the outcomes for infectivity via tick infection would 

be different from that of needle inoculation. One caveat of this study is that the complete enzootic cycle 

of the oppA4 mutant was not performed. The parental strain of B. burgdorferi used in this study is 

5A18NP1, which does not contain the endogenous plasmids lp56 and lp28-4: both plasmids were reported 

to contribute to colonize ticks (Jacobs et al., 2006; Strother et al., 2005). Given that expression of oppA4 

is preferably expressed in ticks, we postulate that OppA4 plays a more prominent role in the tick part of 

the cycle of B. burgdorferi. Generating an oppA4 mutant in a B. burgdorferi strain with complete 

endogenous plasmids is warranted to examine the exact role of OppA4 in the enzootic cycle of B. 

burgdorferi.  
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Table 1. Strains, plasmids, and primers used in this study. 

 

Strains, plasmids 

or primers 
Description or sequence 

Purpose or 

source 

Strains   

5A18NP1 Wild-type strain with bbe02 gene disrupted by Kanr 
(Kawabata et al., 

2004) 

OppA4-mut oppA4 deletion mutant; 5A18NP1 transformed with pZB20 In this study  

OppA4-com oppA4 complementation; OppA4-mut transformed with pZB028 In this study 

Plasmids   

pZB020 Suicide vector for constructing oppA4 deletion; Strr In this study 

pZB028 Shuttle vector carrying oppA4 gene; Genr In this study 

Primers   

PRBB067 (2F) 
GCAGGGCCCTTAACTTTTATAATCTTTATTTTCAATCGATT

CAACCATTAC 

Amplify oppA4 

upstream region 

PRBB068 
GCAGTCGACACAAGCATCCTTACAAGTTTTTATAAATTTA

AATTTTGCC 
Same as above 

PRBB049 GCACCCGGGTTTAAGTAAAAATGGTTTATAGCTAGATC 

Amplify oppA4 

downstream 

region  

PRBB050 
GCAGGATCCATGCCAAATAAGATAACAAAAGAAGCTTTA

A C 
Same as above 

PRBB034 (1R) 
GCACTGCAGTCATTTAATTGGTTTTATTTCAGATAAATTA

AATC 

Amplify oppA4 

with NdeI and 

PstI  

PRBB056 
GCACATATGATGTACCCATACGATGTTCCAGATTACGCTA

AAATATTGATAAAAAAGTTAAAAG 
Same as above 

PRYY049 GATCAGATCTCAGCTTTTTTTTGA 

Amplify flgBp-

partial aacC1 

with BglII site 
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PRBB053 GCGAGATCATAGATATAAATCTCACTACGCGGCTGCTC Same as above 

PRBB052 GAGCAGCCGCGTAGTGAAAT CTATATCTATGATCTCGC 

Amplify partial 

aacC1 with 

AatII site 

PRYY056 TCCGGCGACGTCATTAGGTGGCGGTACTTG Same as above 

PRBB033 (1F) 
GCACATATGATGAAAATATTGATAAAAAAGTTAAAAGTT

GTA 

Amplify oppA4 

for identification 

PRBB097 (2R) GCTGCGTAACATATATAGAAACCTCCCTC 
Amplify BB_B14 

for identification 

PRBB003  

(3F, 4F) 
GAGGAATGAATGAGGGAAGCGGTGATCGCC 

Amplify aadA 

for identification 

PRBB135 (3R) ACAACAAGAATCGTTGCGGG 
Amplify guaB 

for identification 

PRBB009 (4R) GCAACGCGTTATTTGCCGACTACCTTGGTGATC Same as above 

qPCR-flaB-F CAGCAATAGCTTCATCTTGGTTTG qPCR for flaB 

qPCR-flaB-R ACCAGCATCTTCAGGGTCTCA qPCR for flaB 

qhx-rpoS-F ATTTTCAACTTATGCATCATTTTG qPCR for rpoS 

qhx-rpoS-R TTTTCTTTTCTGTATGGGACTTTT qPCR for rpoS 

qhx-ospC-F TAGCGGGAGCTTATGCAATATCAACC qPCR for ospC 

qhx-ospC-R CATCAATTTTTTCCTTTAATCCTTCA qPCR for ospC 

PRBB132 GGATACAGACCGGGACTTGC qPCR for oppA4 

PRBB133 CCTTCGGCAGTAATGGAAACTC qPCR for oppA4 
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      Table 2．Mouse infection of the OppA4-mut and OppA4-com 

 WT† OppA4-mut† OppA4-com 

No. of infected mice 

/Total No. of mice 
3/3 4/5 4/5 

            * C3H/HeN mice were needle infected with 105 spirochetes/mouse. 

                   † Fisher Exact Test statistic value between WT and OppA4-mut is 1.  
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FIGURE LEGEND 

 

Fig. 1. Construction of the oppA4 mutant and the complemented strain. (A) Strategy for constructing 

the oppA4 mutant. WT: wild type. (B) Diagram of the shuttle vector used for complementation. (C) PCR 

analysis of the oppA4 mutant (Mut) and the complemented strain (Com). Primers used are labeled on top 

and their locations are indicated in (A). (D) qRT-PCR analysis of oppA4 mRNA levels in wild-type strain 

(WT), the oppA4 mutant (OppA4-mut), and the complemented strain (OppA4-com). The values of the 

oppA4 mRNA were normalized with the flaB mRNA level.  

Fig. 2. Endogenous plasmid profile analysis. WT, wild-type strain 5A18NP1. OppA4-Mut, the oppA4 

mutant. OppA4-Com, the oppA4 mutant complemented with a shuttle vector carrying a wild-type copy of 

oppA4. cp, circular plasmid; lp, linear plasmid. 

Fig. 3. Increased level of OspC production in the oppA4 mutant. Strains of WT, OppA4-Mut, and 

OppA4-Com were cultured in standard BSK-II medium at 37oC. Spirochetes were collected at mid-log 

(M, 107 spirochetes/ml) or stationary phase (S, 5 X 108 spirochetes/ml) and subjected to SDS-PAGE 

analysis.  The band corresponding to OspC was labeled and indicated by arrow.  

Fig. 4. Increased RpoS and BosR levels of the oppA4 mutant. WT, OppA4-Mut and OppA4-Com 

were cultured in standard BSK-II medium at 37oC. Spirochetes were collected at mid-log (M, 107 

spirochetes/ml) or stationary phase (S, 5 X 108 spirochetes/ml) and subjected to immunoblot analysis 

using antibodies specific for FlaB, RpoS, OspC, BosR or BadR. For immunoblotting against OspC, 50-

fold less amount of samples were loaded.  

Fig 5. Increased levels of rpoS, bosR and ospC mRNA in the oppA4 mutant. WT, OppA4-Mut and 

OppA4-Com were cultured in standard BSK-II medium at 37oC, and were collected at mid-log phase (M, 
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107 spirochetes/ml). RNAs were isolated and then subjected to qRT-PCR analyses. Levels of each gene 

transcript were normalized with flaB. The bars represent the mean values of three independent experiments, 

and the error bars represent the SD. *, P < 0.05. 
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