166 research outputs found

    Transposon-induced homologous recombination at the maize P locus and in transgenic Arabidopsis

    Get PDF
    The maize P gene encodes a Myb-homologous regulator of red phlobaphene pigment biosynthesis in the pericarp, cob and other floral tissues. The P locus has a unique structure with two 5.2kb direct repeats flanking the P gene coding region. When the transposon (Ac) inserts into one site between the two direct repeats in the P-ovov-1114 allele, homologous recombination between the two 5.2kb repeats can occur and the whole P gene coding sequence is deleted;To further study this transposon-induced homologous recombination. This study examined six alleles that carry Ac insertions at different sites in the P locus, in both orientations. Each allele was tested as a heterozygote with P-wr, in the same hybrid (4Co63/W23) genetic background. After the cross with the r-m3::Ds reporter, the mature ears were examined for the presence of colorless pericarp sectors. We found the alleles with Ac inserted at different sites between the two direct repeats had higher frequency of colorless sector than the alleles with Ac insertions either within or outside the 5\u27 direct repeat. These results suggest that the transposon-induced homologous recombination is enhanced by the insertion of the element between the repeats. Ac orientation might have no effect on homologous recombination at P locus;To test if transposon-induced recombination is a general phenomenon in plants, we transformed Arabidopsis with a construct (GU-Ds-US) containing a stable transposon (Ds) inserted between two deleted GUS parts with homologous direct repeats similar to Ac inserted in maize P locus. Arabidopsis transformants containing GU-Ds-US construct were crossed with Arabidopsis lines containing stable Ac, which provided transposase to activate Ds. The progeny gave \u3e1000 fold higher frequency of the blue spots than the control plants without Ac transposase. Blue spots indicated the homologous recombination and restoration of the GUS gene. Transposon-induced recombination was observed in vegetative and floral organs, and several germinally transmitted events were observed;Therefore, the results demonstrate that transposon-induced homologous recombination can occur at the endogenous maize gene as well as artificial construct in transgenic Arabidopsis. It may be a general effect in plants and could play a role in plant genome evolution

    Observation and analysis of diving beetle movements while swimming

    Get PDF
    The fast swimming speed, flexible cornering, and high propulsion efficiency of diving beetles are primarily achieved by their two powerful hind legs. Unlike other aquatic organisms, such as turtle, jellyfish, fish and frog et al., the diving beetle could complete retreating motion without turning around, and the turning radius is small for this kind of propulsion mode. However, most bionic vehicles have not contained these advantages, the study about this propulsion method is useful for the design of bionic robots. In this paper, the swimming videos of the diving beetle, including forwarding, turning and retreating, were captured by two synchronized high-speed cameras, and were analyzed via SIMI Motion. The analysis results revealed that the swimming speed initially increased quickly to a maximum at 60% of the power stroke, and then decreased. During the power stroke, the diving beetle stretched its tibias and tarsi, the bristles on both sides of which were shaped like paddles, to maximize the cross-sectional areas against the water to achieve the maximum thrust. During the recovery stroke, the diving beetle rotated its tarsi and folded the bristles to minimize the cross-sectional areas to reduce the drag force. For one turning motion (turn right about 90 degrees), it takes only one motion cycle for the diving beetle to complete it. During the retreating motion, the average acceleration was close to 9.8 m/s2 in the first 25 ms. Finally, based on the diving beetle's hind-leg movement pattern, a kinematic model was constructed, and according to this model and the motion data of the joint angles, the motion trajectories of the hind legs were obtained by using MATLAB. Since the advantages of this propulsion method, it may become a new bionic propulsion method, and the motion data and kinematic model of the hind legs will be helpful in the design of bionic underwater unmanned vehicles

    Photo-Otto engine with quantum correlations

    Full text link
    We theoretically prose and investigate a photo-Otto engine that is working with a single-mode radiation field inside an optical cavity and alternatively driven by a hot and a cold reservoir, where the hot reservoir is realized by sending one of a pair of correlated two-level atoms to pass through the optical cavity, and the cold one is made of a collection of noninteracting boson modes. In terms of the quantum discord of the pair of atoms, we derive the analytical expressions for the performance parameters (power and efficiency) and stability measure (coefficient of variation for power). We show that quantum discord boosts the performance and efficiency of the quantum engine, and even may change the operation mode. We also demonstrate that quantum discord improves the stability of machine by decreasing the coefficient of variation for power which satisfies the generalized thermodynamic uncertainty relation. Finally, we find that these results can be transferred to another photo-Otto engine model, where the optical cavity is alternatively coupled to a hot thermal bosonic bath and to a beam of pairs of the two correlated atoms that play the role of a cold reservoir

    Design and Study of Cognitive Network Physical Layer Simulation Platform

    Get PDF
    Cognitive radio technology has received wide attention for its ability to sense and use idle frequency. IEEE 802.22 WRAN, the first to follow the standard in cognitive radio technology, is featured by spectrum sensing and wireless data transmission. As far as wireless transmission is concerned, the availability and implementation of a mature and robust physical layer algorithm are essential to high performance. For the physical layer of WRAN using OFDMA technology, this paper proposes a synchronization algorithm and at the same time provides a public platform for the improvement and verification of that new algorithm. The simulation results show that the performance of the platform is highly close to the theoretical value

    Surface analytical investigation on organometal triiodide perovskite

    Get PDF
    In a little over a year, there has been an unexpected breakthrough and rapid evolution of highly efficient solid-state hybrid solar cells based on organometal trihalide perovskite materials. This technology has the potential to produce solar cells with the very highest efficiencies while retaining the very lowest cost. The authors have measured the electronic density of states of CH3NH3PbI3 using ultraviolet photoemission spectroscopy (UPS), inverse photoemission spectroscopy (IPES), and x-ray photoemission spectroscopy (XPS). The valence band maximum and conduction band minimum positions are obtained from the UPS and IPES spectra, respectively, by linear extrapolation of the leading edges. The authors investigate the Au/perovskite and C60/perovskite interfaces by UPS and XPS. An interface dipole of 0.1 eV is observed at Au/perovskite interface. The energy levels of perovskite shift upward by ca.0.4 eV with Au coverage of 64Å upon it, resulting in band bending, hence a built-in field in perovskite that encourages hole transport to the interface. The XPS results show a strong initial shift of core levels to lower binding energy in the perovskite, which indicates that electrons transfer from the perovskite film to fullerene molecules. Further deposition of fullerene forms C60 solid, accompanied by the reduction of the electron transfer. The strongest electron transfer happened at 1/4 monolayer of fullerene

    Electronic structure evolution of fullerene on CH\u3csub\u3e3\u3c/sub\u3eNH\u3csub\u3e3\u3c/sub\u3ePbI\u3csub\u3e3\u3c/sub\u3e

    Get PDF
    The thickness dependence of fullerene on CH3NH3PbI3 perovskite film surface has been investigated by using ultraviolet photoemission spectroscopy (UPS), X-ray photoemission spectroscopy (XPS), and inverse photoemission spectroscopy (IPES). The lowest unoccupied molecular orbital and highest occupied molecular orbital (HOMO) can be observed directly with IPES and UPS. It is observed that the HOMO level in fullerene shifts to lower binding energy. The XPS results show a strong initial shift of core levels to lower binding energy in the perovskite, which indicates that electrons transfer from the perovskite film to fullerene molecules. Further deposition of fullerene forms C60 solid, accompanied by the reduction of the electron transfer. The strongest electron transfer happened at 1/4 monolayer of fullerene

    Interfacial electronic structure at the CH3NH3PbI3/MoOx interface

    Get PDF
    Interfacial electronic properties of the CH3NH3PbI3 (MAPbI3)/MoOx interface are investigated using ultraviolet photoemission spectroscopy and X-ray photoemission spectroscopy. It is found that the pristine MAPbI3 film coated onto the substrate of poly (3,4-ethylenedioxythiophene) poly(styrenesulfonate)/indium tin oxide by two-step method behaves as an n-type semiconductor, with a band gap of ~1.7 eV and a valence band edge of 1.40 eV below the Fermi energy (EF). With the MoOx deposition of 64A ° upon MAPbI3, the energy levels of MAPbI3 shift toward higher binding energy by 0.25 eV due to electron transfer from MAPbI3 to MoOx. Its conduction band edge is observed to almost pin to the EF, indicating a significant enhancement of conductivity. Meanwhile, the energy levels of MoOx shift toward lower binding energy by ~0.30 eV, and an interface dipole of 2.13 eV is observed at the interface of MAPbI3/MoOx. Most importantly, the chemical reaction taking place at this interface results in unfavorable interface energy level alignment for hole extraction. A potential barrier of ~1.36 eV observed for hole transport will impede the hole extraction from MAPbI3 to MoOx. On the other hand, a potential barrier of ~0.14 eV for electron extraction is too small to efficiently suppress electrons extracted from MAPbI3 to MoOx. Therefore, such an interface is not an ideal choice for hole extraction in organic photovoltaic devices

    A community resource for high-throughput quantitative RT-PCR analysis of transcription factor gene expression in Medicago truncatula

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Medicago truncatula </it>is a model legume species that is currently the focus of an international genome sequencing effort. Although several different oligonucleotide and cDNA arrays have been produced for genome-wide transcript analysis of this species, intrinsic limitations in the sensitivity of hybridization-based technologies mean that transcripts of genes expressed at low-levels cannot be measured accurately with these tools. Amongst such genes are many encoding transcription factors (TFs), which are arguably the most important class of regulatory proteins. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) is the most sensitive method currently available for transcript quantification, and one that can be scaled up to analyze transcripts of thousands of genes in parallel. Thus, qRT-PCR is an ideal method to tackle the problem of TF transcript quantification in Medicago and other plants.</p> <p>Results</p> <p>We established a bioinformatics pipeline to identify putative TF genes in <it>Medicago truncatula </it>and to design gene-specific oligonucleotide primers for qRT-PCR analysis of TF transcripts. We validated the efficacy and gene-specificity of over 1000 TF primer pairs and utilized these to identify sets of organ-enhanced TF genes that may play important roles in organ development or differentiation in this species. This community resource will be developed further as more genome sequence becomes available, with the ultimate goal of producing validated, gene-specific primers for all Medicago TF genes.</p> <p>Conclusion</p> <p>High-throughput qRT-PCR using a 384-well plate format enables rapid, flexible, and sensitive quantification of all predicted Medicago transcription factor mRNAs. This resource has been utilized recently by several groups in Europe, Australia, and the USA, and we expect that it will become the 'gold-standard' for TF transcript profiling in <it>Medicago truncatula</it>.</p
    corecore