132 research outputs found
Mitigation of Platinum Depletion in Platinum Diffused Single Phase Bond Coat on CMSX-4 Superalloy
Pt-diffused bond coat with a mixture of γ/γ’ phase has just been developed in the recent decades as a cheaper alternative to the Pt-enriched β-phase Aluminide bond coat that contains a higher content of Al. However, concerns are raised on the inevitable depletion of Pt near the coating interface that may endanger the component after long-term service. In this study, modified Pt-diffused bond coats with a single phase (γ or γ’) were made by applying selective etching on CMSX-4 single crystal superalloys prior to the electroplating of Pt. The single-phase bond coats show distinctive diffusion behaviour in comparison with the conventional γ/γ’ bond coat. Surprisingly, Pt remains more stable in the γ’-phase bond coat with significantly less depletion after diffusion, which implies a potential in saving a considerable amount of Pt. On the other hand, however, the depletion of Pt is more severe in the γ-phase bond coat. The mechanism that governs the diffusion behavior of Pt in the γ and γ’-phase was also discussed that mainly concerns with thermodynamic and kinetic factors
Effects of roughness on stresses in an oxide scale formed on a superalloy substrate
The effects of surface roughness on the stresses in an alumina scale formed on a Fecralloy substrate are investigated. Spherical indenters were used to create indents with different radii and depths to represent surface roughness and then the roughness effect was studied comprehensively. It was found that the residual stresses in the alumina scale formed around the rough surface are almost constant and they are dominated by the curvature rather than the depth of the roughness. Oxidation changes the surface roughness. The edge of the indent was sharpened after oxidation and the residual stress there was released presumably due to cracking. The residual stresses in the alumina scale decrease with increase in oxidation time, while the substrate thickness has little effect, given that the substrate is thicker than the alumina scale. Furthermore, the effect of roughness on the oxide growth stress is analysed. This work indicates that the surface roughness should be considered for evaluation of stresses in coatings
Relay Hindsight Experience Replay: Self-Guided Continual Reinforcement Learning for Sequential Object Manipulation Tasks with Sparse Rewards
Exploration with sparse rewards remains a challenging research problem in
reinforcement learning (RL). Especially for sequential object manipulation
tasks, the RL agent always receives negative rewards until completing all
sub-tasks, which results in low exploration efficiency. To solve these tasks
efficiently, we propose a novel self-guided continual RL framework, RelayHER
(RHER). RHER first decomposes a sequential task into new sub-tasks with
increasing complexity and ensures that the simplest sub-task can be learned
quickly by utilizing Hindsight Experience Replay (HER). Secondly, we design a
multi-goal & multi-task network to learn these sub-tasks simultaneously.
Finally, we propose a Self-Guided Exploration Strategy (SGES). With SGES, the
learned sub-task policy will guide the agent to the states that are helpful to
learn more complex sub-task with HER. By this self-guided exploration and relay
policy learning, RHER can solve these sequential tasks efficiently stage by
stage. The experimental results show that RHER significantly outperforms
vanilla-HER in sample-efficiency on five singleobject and five complex
multi-object manipulation tasks (e.g., Push, Insert, ObstaclePush, Stack,
TStack, etc.). The proposed RHER has also been applied to learn a contact-rich
push task on a physical robot from scratch, and the success rate reached 10/10
with only 250 episodes.Comment: 10 pages, 15 figures. https://github.com/kaixindelele/RHE
Assessing and mitigating the distortion and stress during electron beam welding of a large shell-flange structure
Electron beam (EB) welding can efficiently join large-scale components using one single autogenous pass, but it still faces challenges associated with weld-induced distortion and stress. This study investigates EB welding in a low-alloy steel thick-section shell-flange structure for a small modular reactor. A 3D thermal-metallurgical-mechanical model is developed to assess the weld-induced distortion and stress, as well as the strategy to mitigate them. When no restraint is imposed on the circumferential weld plane, an opening and sliding gap develops during the EB welding, which can cause weld defects and even process failure. Restraint through tack welds can effectively mitigate the gapping distortion, but it generates high transient tensile stress in the tack weld. Circumferentially continuous tack weld is preferential over circumferentially discrete tack welds to minimise the tensile stress. The final residual stress is insensitive to the tack-weld restraint, and the stress distribution in the steady-state welding region is broadly similar to that found in plate butt welds. However, concentration of residual stresses with high triaxiality occurs in the weld stop region, with high tensile stresses generated just behind the beam stop location, which cannot be diminished by overlap welding or change of weld stop position. The mechanisms responsible for the distortion and the transient and residual stresses are analysed. This study could provide rational basis for designing weld restraint to control distortion and guiding stress mitigation strategy for crack-susceptible region in EB weldments
Molecular dynamics simulation of the transformation of Fe-Co alloy by machine learning force field based on atomic cluster expansion
The force field describing the calculated interaction between atoms or
molecules is the key to the accuracy of many molecular dynamics (MD) simulation
results. Compared with traditional or semi-empirical force fields, machine
learning force fields have the advantages of faster speed and higher precision.
We have employed the method of atomic cluster expansion (ACE) combined with
first-principles density functional theory (DFT) calculations for machine
learning, and successfully obtained the force field of the binary Fe-Co alloy.
Molecular dynamics simulations of Fe-Co alloy carried out using this ACE force
field predicted the correct phase transition range of Fe-Co alloy.Comment: 17 pages, 6 figure
Understanding and designing post-build rolling for mitigation of residual stress and distortion in wire arc additively manufactured components
Post-build rolling can mitigate residual stress (RS) and distortion in large-scale components built by wire arc additive manufacturing (WAAM). In this study, based on numerical simulations that considered both WAAM deposition and vertical rolling, the mechanisms of rolling-enabled mitigation of RS and distortion in a WAAM-built steel wall are elucidated. The influences of process configuration and condition, such as roller design (flat, profiled and slotted rollers), rolling load (25–75 kN) and roller-to-wall friction coefficient (0–0.8) on the distributions of plastic strain (PS) and RS were investigated. It is found that the slotted roller is most effective to introduce tensile PS for counteracting the compressive PS generated by the WAAM deposition, thereby reducing the tensile RS in the clamped condition and the final distortion after removal of clamps. Higher rolling load increases the rolling-induced tensile PS, which leads to more extensive mitigation of the WAAM-generated tensile RS. The simulations also demonstrate that the friction coefficient significantly affects the PS and RS when the slotted roller is employed. However, the efficacy of the flat/profiled roller is insensitive to friction coefficient. This study could underpin the development of an optimal post-build rolling process for efficient mitigation of RS and distortion in WAAM components
Modelling and optimising hybrid process of wire arc additive manufacturing and high-pressure rolling
Hybrid process of wire arc additive manufacturing (WAAM) and high-pressure rolling can build large-scale components with low detrimental residual stress (RS) and distortion. We developed an efficient coupled process model for a steel wall to simulate the interaction between WAAM deposition and rolling. The predicted RS distributions and wall dimensions agree well with experimental results. Cyclic variation of longitudinal tensile RS occurs during WAAM deposition and inter-layer rolling in clamped condition. The influence depth of deposition and rolling is characterised by the number of the underlying layers that are plastically deformed after each process cycle. For the inter-layer rolling with a flat roller, the rolling has smaller influence depth than the deposition; consequently, the rolling does not eliminate but rather contains the regeneration of WAAM tensile RS after thermal cycles. Rolling with a slotted roller introduces more tensile plastic strain and thereby more effectively reduces WAAM tensile RS and unclamping distortion. Compared to the inter-layer rolling, stacked-four-layer rolling has larger influence depth and hence achieves similar RS mitigation efficacy with fewer rolling operations, while post-build rolling has lower efficacy due to insufficient penetration. Therefore, stacked-layers rolling with slotted roller is recommended for an optimal hybrid process of WAAM and rolling
Mitigation of Platinum Depletion in Platinum Diffused Single Phase Bond Coat on CMSX-4 Superalloy
From MDPI via Jisc Publications RouterHistory: accepted 2021-05-28, pub-electronic 2021-05-31Publication status: PublishedPt-diffused bond coat with a mixture of γ/γ’ phase has just been developed in the recent decades as a cheaper alternative to the Pt-enriched β-phase Aluminide bond coat that contains a higher content of Al. However, concerns are raised on the inevitable depletion of Pt near the coating interface that may endanger the component after long-term service. In this study, modified Pt-diffused bond coats with a single phase (γ or γ’) were made by applying selective etching on CMSX-4 single crystal superalloys prior to the electroplating of Pt. The single-phase bond coats show distinctive diffusion behaviour in comparison with the conventional γ/γ’ bond coat. Surprisingly, Pt remains more stable in the γ’-phase bond coat with significantly less depletion after diffusion, which implies a potential in saving a considerable amount of Pt. On the other hand, however, the depletion of Pt is more severe in the γ-phase bond coat. The mechanism that governs the diffusion behavior of Pt in the γ and γ’-phase was also discussed that mainly concerns with thermodynamic and kinetic factors
- …