15 research outputs found

    Chemically modulated graphene quantum dot for tuning the photoluminescence as novel sensory probe

    Get PDF
    A band gap tuning of environmental-friendly graphene quantum dot (GQD) becomes a keen interest for novel applications such as photoluminescence (PL) sensor. Here, for tuning the band gap of GQD, a hexafluorohydroxypropanyl benzene (HFHPB) group acted as a receptor of a chemical warfare agent was chemically attached on the GQD via the diazonium coupling reaction of HFHPB diazonium salt, providing new HFHPB-GQD material. With a help of the electron withdrawing HFHPB group, the energy band gap of the HFHPB-GQD was widened and its PL decay life time decreased. As designed, after addition of dimethyl methyl phosphonate (DMMP), the PL intensity of HFHPB-GQD sensor sharply increased up to approximately 200% through a hydrogen bond with DMMP. The fast response and short recovery time was proven by quartz crystal microbalance (QCM) analysis. This HFHPB-GQD sensor shows highly sensitive to DMMP in comparison with GQD sensor without HFHPB and graphene. In addition, the HFHPB-GQD sensor showed high selectivity only to the phosphonate functional group among many other analytes and also stable enough for real device applications. Thus, the tuning of the band gap of the photoluminescent GQDs may open up new promising strategies for the molecular detection of target substrates. Ā© The Author(s) 20166511sciescopu

    Recent Progress in Polysaccharide Aerogels: Their Synthesis, Application, and Future Outlook

    No full text
    Porous polysaccharides have recently attracted attention due to their porosity, abundance, and excellent properties such as sustainability and biocompatibility, thereby resulting in their numerous applications. Recent years have seen a rise in the number of studies on the utilization of polysaccharides such as cellulose, chitosan, chitin, and starch as aerogels due to their unique performance for the fabrication of porous structures. The present review explores recent progress in porous polysaccharides, particularly cellulose and chitosan, including their synthesis, application, and future outlook. Since the synthetic process is an important aspect of aerogel formation, particularly during the drying step, the process is reviewed in some detail, and a comparison is drawn between the supercritical CO2 and freeze drying processes in order to understand the aerogel formation of porous polysaccharides. Finally, the current applications of polysaccharide aerogels in drug delivery, wastewater, wound dressing, and air filtration are explored, and the limitations and outlook of the porous aerogels are discussed with respect to their future commercialization

    Tunable Sub-nanopores of Graphene Flake Interlayers with Conductive Molecular Linkers for Supercapacitors

    No full text
    Although there are numerous reports of high performance supercapacitors with porous graphene, there are few reports to control the interlayer gap between graphene sheets with conductive molecular linkers (or molecular pillars) through a Ļ€-conjugated chemical carbon-carbon bond that can maintain high conductivity, which can explain the enhanced capacitive effect of supercapacitor mechanism about accessibility of electrolyte ions. For this, we designed molecularly gap-controlled reduced graphene oxides (rGOs) via diazotization of three different phenyl, biphenyl, and para-terphenyl bis-diazonium salts (BD1-3). The graphene interlayer sub-nanopores of rGO-BD1-3 are 0.49, 0.7, and 0.96 nm, respectively. Surprisingly, the rGO-BD2 0.7 nm gap shows the highest capacitance in 1 M TEABF4 having 0.68 nm size of cation and 6 M KOH having 0.6 nm size of hydrated cation. The maximum energy density and power density of the rGO-BD2 were 129.67 W h kg-1 and 30.3 kW kg-1, respectively, demonstrating clearly that the optimized sub-nanopore of the rGO-BDs corresponding to the electrolyte ion size resulted in the best capacitive performance. Ā© 2016 American Chemical Society117191sciescopu

    Comparison of the Optical Properties of Graphene and Alkyl-terminated Si and Ge Quantum Dots

    Get PDF
    Semiconductor quantum dots are widely investigated due to their size dependent energy structure. In particular, colloidal quantum dots represent a promising nanomaterial for optoelectronic devices, such as photodetectors and solar cells, but also luminescent markers for biotechnology, among other applications. Ideal materials for these applications should feature efficient radiative recombination and absorption transitions, altogether with spectral tunability over a wide range. Group IV semiconductor quantum dots can fulfill these requirements and serve as an alternative to the commonly used direct bandgap materials containing toxic and/or rare elements. Here, we present optical properties of butyl-terminated Si and Ge quantum dots and compare them to those of graphene quantum dots, finding them remarkably similar. We investigate their time-resolved photoluminescence emission as well as the photoluminescence excitation and linear absorption spectra. We contemplate that their emission characteristics indicate a (semi-) resonant activation of the emitting channel; the photoluminescence excitation shows characteristics similar to those of a molecule. The optical density is consistent with band-to-band absorption processes originating from core-related states. Hence, these observations strongly indicate a different microscopic origin for absorption and radiative recombination in the three investigated quantum dot systems. Ā© 2017 The Author(s)101sciescopu

    Effect of oxygen vacancies on electrical conductivity of La0.5Sr0.5FeO3-delta from first-principles calculations

    No full text
    We use first-principles density functional theory calculations to understand how oxygen vacancies degrade the electrical conductivity of mixed ionic-electronic conductor (MIEC) at low oxygen partial pressure (P-O2). Analysis focused on La0.5Sr0.5FeO3-delta, which shows the highest mixed conductivity among cobalt-free iron-based perovskite oxides. Calculation results show that hole compensation by electrons released from oxygen vacancies lowers the electrical conductivity and eventually leads to metal-to-semiconductor transition at low P-O2. Analyses of effective mass change and charge-density show that holes are the major charge carrier of electrical conductivity, but the contribution of electrons to conductivity increases as temperature increases. We suggest several possible ways to reduce the degradation of electrical conductivity at low P-O2. Our results provide guidelines to design highly effective oxygen-selective membranes.11Nsciescopu

    One-Step Synthesis of Transition Metal Dichalcogenide Quantum Dots Using Only Alcohol Solvents for Indoor-Light Photocatalytic Antibacterial Activity

    No full text
    In this study, we report a one-step direct synthesis of molybdenum disulfide (MoS2) and tungsten disulfide (WS2) quantum dots (QDs) through a solvothermal reaction using only alcohol solvents and efficient Escherichia coli (E. coli) decompositions as photocatalytic antibacterial agents under visible light irradiation. The solvothermal reaction gives the scission of molybdenum-sulfur (Mo-S) and tungsten-sulfur (W-S) bonding during the synthesis of MoS2 and WS2 QDs. Using only alcohol solvent does not require a residue purification process necessary for metal intercalation. As the number of the CH3 groups of alcohol solvents among ethyl, isopropyl, and tert(t)-butyl alcohols increases, the dispersibility of MoS2/WS2 increases. The CH3 groups of alcohols minimize the surface energy, leading to the effective exfoliation and disintegration of the bulk under heat and pressure. The bulky t-butyl alcohol with the highest number of methyl groups shows the highest exfoliation and yield. MoS2 QDs with a lateral size of about 2.5 nm and WS2 QDs of about 10 nm are prepared, exhibiting a strong blue luminescence under 365 nm ultraviolet (UV) light irradiation. Their heights are 0.68-3 and 0.72-5 nm, corresponding to a few layers of MoS2 and WS2, respectively. They offer a highly efficient performance in sterilizing E. coli as the visible-light-driven photocatalyst. Ā© 2023 American Chemical Society11Nscopu

    Large-Scale Direct Patterning of Aligned Single-Walled Carbon Nanotube Arrays Using Dip-Pen Nanolithography

    No full text
    The strength of dip-pen nanolithography (DPN) is the ability to create nano- or microarrays of organic compounds and nanomaterials in a nondestructive and direct-write manner. However, transporting large-sized ink materials, such as carbon nanotubes (CNTs), has been a significant challenge. We report a direct-write patterning of aligned single-walled carbon nanotube (SWNT) arrays on silicon oxide using DPN. The patterned SWNT arrays show a high degree of alignment and controllable width ranging from 2 Ī¼m down to 8 nm. Furthermore, field-effect transistors based on these SWNT arrays show p-type characteristic. High-throughput patterning of the aligned SWNTs over a large area was also achieved via polymer pen lithography (PPL). The reported technique will further expand the application of SWNTs to diverse nanoelectronic devices
    corecore