208 research outputs found

    User Pairing for Downlink Non-Orthogonal Multiple Access Networks Using Matching Algorithm

    Get PDF
    In this paper, we study the user pairing in a downlink non-orthogonal multiple access (NOMA) network, where the base station allocates the power to the pairwise users within the cluster. In the considered NOMA network, a user with poor channel condition is paired with a user with good channel condition, when both their rate requirements are satisfied. Specifically, the quality of service for weak users can be guaranteed, since the transmit power allocated to strong users is constrained following the concept of cognitive radio. A distributed matching algorithm is proposed in the downlink NOMA network, aiming to optimize the user pairing and power allocation between weak users and strong users, subject to the users' targeted rate requirements. Our results show that the proposed algorithm outperforms the conventional orthogonal multiple access scheme and approaches the performance of the centralized algorithm, despite its low complexity. In order to improve the system's throughput, we design a practical adaptive turbo trellis coded modulation scheme for the considered network, which adaptively adjusts the code rate and the modulation mode based on the instantaneous channel conditions. The joint design work leads to significant mutual benefits for all the users as well as the improved system throughput

    Stability and asynchrony of local communities but less so diversity increase regional stability of Inner Mongolian grassland

    Full text link
    Extending knowledge on ecosystem stability to larger spatial scales is urgently needed because present local-scale studies are generally ineffective in guiding management and conservation decisions of an entire region with diverse plant communities. We investigated stability of plant productivity across spatial scales and hierarchical levels of organization and analyzed impacts of dominant species, species diversity, and climatic factors using a multisite survey of Inner Mongolian grassland. We found that regional stability across distant local communities was related to stability and asynchrony of local communities. Using only dominant instead of all-species dynamics explained regional stability almost equally well. The diversity of all or only dominant species had comparatively weak effects on stability and synchrony, whereas a lower mean and higher variation of precipitation destabilized regional and local communities by reducing population stability and synchronizing species dynamics. We demonstrate that, for semi-arid temperate grassland with highly uneven species abundances, the stability of regional communities is increased by stability and asynchrony of local communities and these are more affected by climate rather than species diversity. Reduced amounts and increased variation of precipitation in the future may compromise the sustainable provision of ecosystem services to human well-being in this region

    Resilient dynamic state estimation for multi-machine power system with partial missing measurements

    Get PDF
    Accurate tracking the dynamics of power system plays a significant role in its reliability, resilience and security. To achieve the reliable and precise estimation results, many advanced estimation methods have been developed. However, most of them are aiming at filtering the measurement noise, while the adverse affect of partial measurement missing is rarely taken into account. To deal with this issue, a discrete distribution in the interval [0,1] is introduced to depict mechanism of partial measurement data loss that caused by the sensor failure. Then, a resilient fault tolerant extended Kalman filter (FTEKF) is designed in the recursive filter framework. Eventually, extensive simulations are carried on the different scale test systems. Numerical experimental results illustrate that the resilience and robustness of the proposed fault tolerant EKF method against partial measurement data loss

    Clinical Study Age-Associated Reduction of Asymmetry in Human Central Auditory Function: A 1H-Magnetic Resonance Spectroscopy Study

    Get PDF
    The aim of this study was to investigate the effects of age on hemispheric asymmetry in the auditory cortex after pure tone stimulation. Ten young and 8 older healthy volunteers took part in this study. Two-dimensional multivoxel 1H-magnetic resonance spectroscopy scans were performed before and after stimulation. The ratios of N-acetylaspartate (NAA), glutamate/glutamine (Glx), and -amino butyric acid (GABA) to creatine (Cr) were determined and compared between the two groups. The distribution of metabolites between the left and right auditory cortex was also determined. Before stimulation, left and right side NAA/Cr and right side GABA/Cr were significantly lower, whereas right side Glx/Cr was significantly higher in the older group compared with the young group. After stimulation, left and right side NAA/Cr and GABA/Cr were significantly lower, whereas left side Glx/Cr was significantly higher in the older group compared with the young group. There was obvious asymmetry in right side Glx/Cr and left side GABA/Cr after stimulation in young group, but not in older group. In summary, there is marked hemispheric asymmetry in auditory cortical metabolites following pure tone stimulation in young, but not older adults. This reduced asymmetry in older adults may at least in part underlie the speech perception difficulties/presbycusis experienced by aging adults

    Pre-Training on Large-Scale Generated Docking Conformations with HelixDock to Unlock the Potential of Protein-ligand Structure Prediction Models

    Full text link
    Protein-ligand structure prediction is an essential task in drug discovery, predicting the binding interactions between small molecules (ligands) and target proteins (receptors). Although conventional physics-based docking tools are widely utilized, their accuracy is compromised by limited conformational sampling and imprecise scoring functions. Recent advances have incorporated deep learning techniques to improve the accuracy of structure prediction. Nevertheless, the experimental validation of docking conformations remains costly, it raises concerns regarding the generalizability of these deep learning-based methods due to the limited training data. In this work, we show that by pre-training a geometry-aware SE(3)-Equivariant neural network on a large-scale docking conformation generated by traditional physics-based docking tools and then fine-tuning with a limited set of experimentally validated receptor-ligand complexes, we can achieve outstanding performance. This process involved the generation of 100 million docking conformations, consuming roughly 1 million CPU core days. The proposed model, HelixDock, aims to acquire the physical knowledge encapsulated by the physics-based docking tools during the pre-training phase. HelixDock has been benchmarked against both physics-based and deep learning-based baselines, showing that it outperforms its closest competitor by over 40% for RMSD. HelixDock also exhibits enhanced performance on a dataset that poses a greater challenge, thereby highlighting its robustness. Moreover, our investigation reveals the scaling laws governing pre-trained structure prediction models, indicating a consistent enhancement in performance with increases in model parameters and pre-training data. This study illuminates the strategic advantage of leveraging a vast and varied repository of generated data to advance the frontiers of AI-driven drug discovery
    corecore