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Resilient Dynamic State Estimation for

Multi-Machine Power System With Partial Missing
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Dinavahi, Fellow, IEEE, Jun Liang, Senior Member, IEEE, and Kewen Wang, Member, IEEE

Abstract—Accurate tracking the dynamics of power system
plays a significant role in its reliability, resilience and security.
To achieve the reliable and precise estimation results, many
advanced estimation methods have been developed. However,
most of them are aiming at filtering the measurement noise,
while the adverse affect of partial measurement missing is rarely
taken into account. To deal with this issue, a discrete distribution
in the interval [0,1] is introduced to depict mechanism of partial
measurement data loss that caused by the sensor failure. Then,
a resilient fault tolerant extended Kalman filter (FTEKF) is
designed in the recursive filter framework. Eventually, extensive
simulations are carried on the different scale test systems.
Numerical experimental results illustrate that the resilience and
robustness of the proposed fault tolerant EKF method against
partial measurement data loss.

Index Terms-Sensor failure, partial missing measurements,
extended Kalman filter, dynamic state estimation, power systems.

NOMENCLATURE

Efd
Internal field voltage in p.u.

It Terminal current phasor.

iq, id Currents in the q- and d-axes in p.u.

iR, iI
Real and imaginary of the terminal current
phasor in p.u.

Tm
Mechanical torque in p.u.

T ′

d0, T
′

q0

Open-circuit time constants in the q- and d-
axes in seconds.

SB , SN
System and generator base MVA.

Pe
Electrical active output power in p.u.

KD
Damping factor in p.u.

Ψ Voltage source vector.

ΨI ,ΨR

Column vectors of all generators’ imaginary
and real parts of the voltage source on system
reference frame.
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I. INTRODUCTION

S
TATE estimation is the key to various advanced applica-

tions in energy management systems (EMS), which can

provide the paramount status information of the power system

[1]-[3]. Generally speaking, the power system state estimation

are composed of two categories, one of them is named static

state estimation (SSE) and the other is called dynamic state

estimation (DSE). Conventionally, the static states of power

system at one time instant can be estimated by making use

of a single set of redundant measurements [4]. However,

the static state estimation cannot predict the future operation

trend of system, which may not be sufficient for the analysis

requirements of the power system with a high proportion of

new energy sources [5]. Therefore, the DSE that is capable of

capturing the dynamic changes in nonlinear power system has

attracted much attention [6]-[7].

In this context, many different DSE approaches for power

system have been developed. Among these numerous dynamic

state estimation methods, Kalman filter (KF) and its variants

are dominant due to their advantages in computational effi-

ciency [6]-[16]. In [8], the feasibility of utilizing an extended

Kalman filter (EKF) to track the dynamic states is investigated

and confirmed. In [9], a decentralized EKF method that can

estimate the unknown inputs and dynamic states simultane-

ously was developed. To enhance the robustness against dis-

turbances, an iterated EKF was proposed in [10]. In addition,

to alleviate the adverse impact of nonlinearity on DSE, by

introducing the adaptive interpolation technique in the standard

EKF, a multi-step method was proposed in [11]. Furthermore,

several nonlinear filters were also developed and used to

enhance the accuracy of DSE, such as the unscented Kalman

filter (UKF) method that utilized the unscented transformation

technique [12]-[15], the cubature Kalman filter (CKF) [16],

[17], the ensemble Kalman filter (EnKF) [18], and the particle

filter (PF) approach [19], [20].

These aforementioned works have greatly enhanced the

monitoring level of power system, which can provide solid

data information support for various advanced applications in

the energy management system (EMS), such as the out-of-step

detection for generators and the protection of series compen-

sated transmission lines [21], [22], etc. However, it should be

noted that most of the above methods are only aimed at filter-

ing the measurement noise and improving the accuracy of DSE

for power system under normal operating conditions, where
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the adverse affect that caused by inevitable measurements

missing in the process of acquisition and transmission is rarely

considered. Unfortunately, in the engineering practice, the

measurements with intermittent information losses frequently

occur due to the sensor malfunction or complex environments

[23]. Thus, as verified in [24], the estimation performance

of above discussed approaches may degrade seriously in the

presence of incomplete measurement information.

To alleviate the adverse effects of measurement missing,

meaningful research work has been carried out in [25]-[28].

Note that, in most of the existing literature, the measurement

missing are often expressed by a random variable obeying

Bernoulli distribution, where the measurements are assumed

to be either utterly missing or completely available. However,

for a practical power system, it is rare for the measurements to

be completely lost, while the scenario of partial measurement

data loss is relatively common [30]. For example, the data

provided by phase measurement units (PMUs) are converted

by the analog to digital converters (ADCs) from the continuous

measurement signals; therefore, the output of ADCs may be

subject to fading because of the poorly designed peripheral cir-

cuits or unstable reference voltage. In addition, the communi-

cation media such as the power lines and optical fiber channels

may also attenuate the measurement signals [31]. The partial

missing measurements phenomenon is quite distinct from the

measurement data loss issue as discussed in the previous work

[25]-[28], which should be re-examined. Therefore, how to

model the partial missing measurements phenomenon in the

DSE of power system and develop an resilient dynamic state

estimator for power system is a challenging issue. This also

constitutes the main motivation of our current research.

To deal with these challenges, in this paper, a resilient fault

tolerant EKF that can suppress the adverse influence of partial

measurement loss is designed. The main contributions of this

paper are highlighted as follows:

• Firstly, the dynamic state estimation model of multi-

machine power system with partial missing measurement is

established;

• Secondly, a resilient fault tolerant extended Kalman filter

is designed to deal with the adverse influence of partial

measurements missing on the accuracy of dynamic state

estimation for power system;

• Finally, the stability and convergence of the developed

FTEKF approach are proved.

The rest of this paper is organized as follows. Section II

establishes the DSE model of multi-machine power system

with partial missing measurements. Section III develops the

proposed resilient FTEKF approach. Section IV analyzes the

numerical results on different test systems. Eventually, this

paper is concluded in Section V.

Notation: The notation utilized here is comparatively stan-

dard unless otherwise stated. The subscript k represents

the time instant. x̃k denotes the prior estimator of xk, x̂k

represents the posterior estimator of xk. yk indicates the

measurement, I denotes the identity matrix. E[·] represents

the expectation of the stochastic variable. ⊗ indicates the

Hadamard product, Kk represents the Kalman gain. Qk

means the covariance matrix of system noise, Rk denotes the

covariance matrix of measurement noise.

II. DYNAMIC MODEL OF MULTI-MACHINE POWER

SYSTEM

In this part, the continuous dynamic model of power system

that to track its states is established, which can be discretized

by the modified Euler method [7]. More importantly, the

phenomenon of partial missing measurements is fully analyzed

and modeled in detail.

A. Continuous Model of Multi-Machine Power System

In this section, the synchronous generator and measurement

model in [13] are applied to depict the dynamics of multi-

machine power system, which allow both the fourth-order tran-

sient generator model and the second-order classical generator

model.

For convenience of expression, let G2 and G4 respectively

indicate the set of generators with second-order and fourth-

order model in a power system. The number of generators

with second-order or fourth-order model, which is also the

cardinality of the sets G2 and G4, are g2 and g4, respectively.

Therefore, the number of state variables to be estimated is

n = 2g2 + 4g4. For generator i ∈ G4, the transient stability

model of generator can be expressed by the fourth-order

differential equations in local d-q reference frame:




δ̇i = ωi − ω0

ω̇i =
ω0

2Hi

(
Tmi − Tei −

KDi

ω0
(ωi − ω0)

)

ė′qi =
1

T ′

d0i

(
Efdi − e′qi − (xdi − x′

di) idi
)

ė′di =
1

T ′

q0i

(
−e′di +

(
xqi − x′

qi

)
iqi

)
, (1)

where i indicates the generator serial number; δ, ω, e′q and e′d
indicate the power angle, electrical angular velocity, transient

electromotive force on q-axis and d-axis of a synchronous gen-

erator, respectively; ω0 represents the initial value of ω; KD

indicates the damping factor; Tj , Tm and Te are respectively

denote the inertia constant, mechanical and electromagnetic

power; Efd means the excitation voltage of stator; xd, x′
d,

xq and x′
q are respectively symbolize the synchronous and

transient reactance of generator’s d-axis and q-axis; T ′
d0, T ′

q0,

id and iq indicate the d and q axis time constants and stator

currents, respectively.

For the generator i ∈ G2, the classical generator model only

contains the first two equations of (1), and the e′qi and e′di
are kept unchanged; the state vector and the output vector

are x =
[
δT ωT

]
and y =

[
P T

G QT
G V T θT

]
,

respectively.

To facilitate the notation, the continuous model of multi-

machine power system expressed in (1) can be rewritten in a

general state space form as follows
{

ẋ = fc(x,u) +wc

y = hc(x,u) + vc
, (2)

where the state variable x, input signal u and output vector

y are respectively

x =
[
δ⊤ ω⊤ e′⊤q e′⊤d

]⊤
, (3)

u =
[
T⊤
m

E⊤
fd

]⊤
, (4)
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y =
[
e⊤
R

e⊤
I

i⊤
R

i⊤
I

]⊤
. (5)

The iqi, idi, and Tei in (1) are functions of x:

ΨRi = e′di sin δi + e′qi cos δi, (6a)

ΨIi = e′qi sin δi − e′di cos δi, (6b)

Iti = Y i (ΨR + jΨI) , (6c)

iRi = Re (Iti) , (6d)

iIi = Im (Iti) , (6e)

iqi =
SB

SNi

(iIi sin δi + iRi cos δi) , (6f)

idi =
SB

SNi

(iRi sin δi − iIi cos δi) , (6g)

eqi = e′qi − x′
diidi, (6h)

edi = e′di + x′
qiiqi, (6i)

Pei = eqiiqi + ediidi, (6j)

Tei =
SB

SNi

Pei. (6k)

In (6), the output signals iR and iI are written as functions

of x; and the outputs eRi and eIi can be expressed by

eRi = edi sin δi + eqi cos δi, (7)

eIi = eqi sin δi − edi cos δi. (8)

B. Discrete Model of Multi-Machine Power System With Par-

tial Missing Measurements

Based on the continuous model expressed in (2), the discrete

time state-space model of multi-machine power system with

partial missing measurements can be derived as follows:
{

xk = f (xk−1,uk−1) +wk

yk = Ξkh (xk,uk) + vk
, (9)

where the subscript k denotes the time instant at k∆t, ∆t

indicates the sampling period; wk and vk are the system noise

and measurement noise vector, which are usually consider as

Gaussian white noise with zero mean. Let diag{·} represents

the diagonal matrix, Ξk = diag
{
γ1
k, γ

2
k, · · · γ

m
k

}
and γi

k (i =
1, 2, ...m) represent the random variables in k and i, which are

independent of the system noise and measurement noise. In

addition h (xk,uk) =
[
h1 (xk) ,h

2 (xk) , · · ·h
m (xk)

]T
. It

is assumed that the probability density function of γi
k on the

interval [0,1] with the expectation µ̄i
k and the variance δ̄ik(i =

1, 2, · · ·m). The system function is discretized by utilizing the

modified Euler approach as follows [7]:

x̃k = xk−1 + fc (xk−1,uk−1)∆t, (10)

f̃ =
fc (x̃k,uk) + fc (xk−1,uk−1)

2
, (11)

xk = xk−1 + f̃∆t. (12)

Remark 1: Unlike the previous research in [23]-[25], the

partial measurement missing depicts the measurement fading

phenomenon that maybe occur in reality [33]. It is used to

describe the attenuation degree of the measured signal. In this

subsection, to characterize the partial measurement missing

in the i th single measurement unit, the random variable

γi
k with the value sampled from the uniform distribution of

[0,1] interval is introduced. Therefore, the attenuation of the

measurement information at a given time instant k can be

determined by the random value of γi
k.

III. RESILIENT FAULT TOLERANT EKF APPROACH

In this part, a resilient fault tolerant EKF method for power

system DSE with partial missing measurements is developed

and the main procedures are presented in detail.

A. Basic Theory

For the sake of simplicity, some lemmas involved in the

derivation will be introduced in advance.

Lemma 1: Given a matrix Am×n and a symmetric matrix

Bn×n = BT
n×n, the partial derivative of tr

(
ABAT

)
with

respect to the matrix A can be expressed by [33]:

∂tr
(
ABAT

)

∂A
= 2AB, (13)

where tr(·) represents the trace of the corresponding matrix.

Lemma 2: Given a real-valued matrix A = [aij ]p×p
and

a diagonal random matrix B = diag (b1, b2, · · · bp), then the

following equation can be derived [34]:

E
(
BABT

)
=




E
(
b21
)
E (b1b2) · · ·E (b1bp)

E (b2b1)E
(
b22
)
· · ·E (b2bp)

...

E (bpb1)E (bpb2) · · ·E
(
b2p
)


⊗A, (14)

where ⊗ represents the Hadamard product, E(·) indicates the

mathematical expectation.

For the sake of convenience, x̂k represents the estimator of

xk, x̃k denotes the prior estimator of xk, which are defined

as follows:
{

x̂k = E [xk | y1,y2, · · ·yk]
x̃k = E [xk | y1,y2, · · ·yk−1]

. (15)

Considering the state-space model of power system in (10)

with partial missing measurements, the following conditions

needed to be satisfied




E [wk] = 0, E [vk] = 0, E
[
wkv

T
j

]
= 0

E
[
wkw

T
j

]
= QkΩk−j , E

[
vkv

T
j

]
= RkΩk−j

Ωk−j = 1(k = j),Ωk−j = 0(k 6= j)

E
[
wkx

T
0

]
= 0, E

[
vkx

T
0

]
= 0

, (16)

where Ωk−j indicates the Kronecker delta function, (·)T

represents the matrix transpose, (·)−1 denotes the inverse of

a matrix. Then, the resilient fault tolerant EKF method for

power system DSE with partial missing measurements can be

developed.

B. Fault Tolerant EKF Method

To track the dynamics of multi-machine power system ac-

curately with partial missing measurements, in this subsection,
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we design a resilient dynamic state estimator of the following

form:

x̃k+1 = f (x̂k,uk) , (17)

x̂k+1 = x̃k+1+Kk+1

[
yk+1 −Ξk+1h (x̃k+1,uk+1)

]
, (18)

where x̃k+1, x̂k+1 are respectively state prediction and state

estimation at the time instant k; Kk+1 indicates the gain of

dynamic state estimator to be designed.

Denoting the state prediction error by ẽk+1 = xk+1− x̃k+1

and the state estimation error by êk+1 = xk+1 − x̂k+1, we

have

P̃k+1 = E[x̃k+1x̃
T
k+1], (19)

P̂k+1 = E[x̂k+1x̂
T
k+1]. (20)

The purpose of this paper is to design a dynamic state

estimator (19) and (20) such that: (i) an upper bound Ψk+1|k+1

is guaranteed for the state estimation error covariance matrix

P̂k+1; (ii) an appropriate gain of the state estimator Kk+1 is

designed to minimize such an upper bound Ψk+1|k+1 at each

time instant.

The detailed derivation of the proposed resilient dynamic

state estimator is presented in the Appendix, it can be imple-

mented by the following sequential steps:

1) Initialization

In this step, to initialize the FTEKF, the states and state

covariance matrix are set up at k = 0, which can be expressed

by

x̂0 = E[x0], (21)

P̂0 = E[(x0 − x̂0)(x0 − x̂0)
T ], (22)

where P̂0 denotes the posterior state estimation error covari-

ance.

2) State Prediction

For each time instant k, the prediction of state and corre-

sponding covariance matrix can be done as follows.

a) Partial derivative matrix of the current state estimate x̂k−1

is calculated by

Fk−1 =
∂f (xk−1,uk−1)

∂xk−1

∣∣∣∣
xk−1=x̂k−1

. (23)

b) The time update of state prediction x̃k and estimation

error covariance matrix P̃k at time instant k is performed by

utilizing

x̃k = f (x̂k−1,uk−1) , (24)

P̃k = Fk−1P̂k−1F
T
k−1 +Qk, (25)

where x̂k−1 and P̂k−1 are the estimated state and state

estimation error covariance matrix at time instant k − 1,

respectively.

3) State Update

For each time instant k, the posterior state vector and the

predicted error covariance matrix can be updated as follows.

a) Partial derivative matrix for the correction is calculated

by

Hk =
∂h (xk)

∂xk

∣∣∣∣
xk=x̃k

. (26)

b) Calculate the Kalman filter gain at time instant k

Kk =
(
P̃kH

T
k Ξ

T
k

)
×
[
ΞkHkP̃kH

T
k Ξ

T
k

+E
(
Ξ̃kh (x̃k)h

T (x̃k) Ξ̃
T
k

)
+Rk

]−1

,
(27)

where Ξ̄k = E (Ξk) = diag
(
µ̄1
k, µ̄

2
k · · · µ̄

m
k

)
and Ξ̃k+1 =

Ξk+1 − Ξ̄k+1.

c) The measurement update of the estimated state x̂k at the

time instant k is performed by

x̂k = x̃k +Kk

[
yk −Ξkh (x̃k)

]
. (28)

d) The measurement update of the estimation error covari-

ance P̂k at the time instant k is calculated by

P̂k =(I −KkΞkHk) P̃k

× (I −KkΞkHk)
T
+KkRkK

T
k

+KkE
[
Ξ̃kh (x̃k)h

T (x̃k) Ξ̃
T
k

]
KT

k

. (29)

Finally, for the sake of simplicity, the proposed resilient

fault tolerant EKF method is summarized as Algorithm 1.

Algorithm 1: Fault Tolerant EKF Method

1: Initialization: set the initial values for x̂0, P̂0, Ts;

2: Input: partial missing measurements yk;

3: while k = 0 to Ts do

4: Step 1: compute the value of predicted state

5: x̃k ← f (x̂k−1,uk−1);
6: Step 2: calculate the covariance matrix of state pre-

diction error

7: P̃k ← Fk−1P̂k−1F
T
k−1 +Qk;

8: Step 3: calculate the Kalman filter gain matrix

9:

Kk ←
(
P̃kH

T
k Ξ

T
k

)
×
[
ΞkHkP̃kH

T
k Ξ

T
k

+E
(
Ξ̃kh (x̃k)h

T (x̃k) Ξ̃
T
k

)
+Rk

]−1

;

10: Step 4: update the predicted state vector with mea-

surement yk

11: x̂k ← x̃k +Kk

[
yk −Ξkh (x̃k)

]
;

12: Step 5: update the covariance matrix of state estima-

tion error

13:

P̂k =(I −KkΞkHk) P̃k

× (I −KkΞkHk)
T
+KkRkK

T
k

+KkE
[
Ξ̃kh (x̃k)h

T (x̃k) Ξ̃
T
k

]
KT

k ;

14: Step 6: output the state variable x̂k, the estimation

error covariance P̂k, and update the time instant

15: k ← k + 1;

16: end while

Remark 2: In the design of fault tolerant EKF method, it

is not necessary to know precisely the occurrence time instant

of sensor data loss, this reflects the actual conditions of power

system and guarantees its good applicability. Nonetheless, the

statistical law of the partial missing measurements is needed,

which can be acquired through statistical tests.
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IV. SIMULATION RESULTS AND ANALYSIS

To validate the resilience of fault tolerant EKF approach

against partial missing measurements, extensive simulations

are implemented on the WECC system, the New England

system and the NPCC system. In addition, the classic EKF

and UKF approaches come from EKF/UKF Toolbox [35] are

also carried out for comparisons.

A. Test Systems

The specific parameters and fault conditions of each test

system are set as follows.

1) WECC 9-bus System : This test system includes three

synchronous generators and three load points with the

total loading of 115MVar and 315MW, whose data and

configuration can be found in [32]. At t=1s, a fault is

occurred near the bus 8 and the line 8-9 is cleared after 2

cycles, which results in a disturbance to the WECC test

system.

2) New England 39-bus System : This system contains ten

synchronous generators, 21 load points with the total

loading of 1378.1MVar and 6254.2MW. The detailed

parameters and topology information of this test system

can be seen in [36]. In the simulations, a fault is applied

to the place near bus 4 of the system after 1 second, which

is cleared after 2 cycles by removing the line between the

bus 4 and bus 14.

3) NPCC 140-bus System : The NPCC system indicates the

northeast region of the EI system. This system includes

forty eight synchronous generators and 140 buses. The

detailed parameters and topology information of this test

system can be found in [13], [38].

In order to effectively reduce the integral error and precisely

capture the dynamic features of each discussed test system,

where the simulation time step is set as 0.001 second. Then, to

accurately mimic the field measurements measured by PMUs,

the simulated data is sampled to 50 samples per second with

the additional noise is added. It’s worth pointing out that all

the discussed approaches are performed in MATLAB R2016b

on a PC with the Intel Core CPU E5-1650, 3.5 GHz and 32

GB RAM.

Furthermore, in order to acquire a more general and signif-

icant result, NMC=200 Monte-Carlo simulations are running

for all the case studies. The performance metric based on the

L1 norm is utilized to quantitatively compare the estimation

results, which is defined as follows:

ex =
1

NMC

NMC∑

j=1

1

Ts

Ts∑

k=1

[
1

n

n∑

i=1

∣∣xest
i,k − xtrue

i,k

∣∣
]
, (30)

where k represents the time instant; Ts indicates the total

simulation time steps, n represents the number of generators

in the test system; x denotes a type of generator states that

can be δ, ω, e′q, or e′d; xest
i,k represents the estimated state and

xtrue
i,k indicates the corresponding true value of generator i at

time instant k.

B. WECC 9-bus System

In this case, the conventional EKF, UKF and the proposed

FTEKF method are tested on the WECC system. To make

the mathematics easy to understand, the second-order classical

model are utilized for all the generators in this test system.

In the simulation studies, the standard deviation of system

and measurement noise is set as 10−2; the initial values of

the estimation error covariance matrix for the EKF, UKF

and the proposed FTEKF approaches are set as 10−4I2n×2n.

The initial states are obtained by the steady-state power flow

calculation.
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Fig. 1. Estimation results of δ1, ω1 for generator 1 of WECC 9-bus system
with partial missing measurements.
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Fig. 2. Estimation results of δ2, ω2 for generator 2 of WECC 9-bus system
with partial missing measurements.
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Fig. 3. Estimation results of δ3, ω3 for generator 3 of WECC 9-bus system
with partial missing measurements.

Figs. 1-3 show the estimation performance of EKF, UKF,



6

0 2 4 6 8 10
-2

0

2

4

6

8
 1

 

 
True
EKF
UKF
FTEKF

0 2 4 6 8 10
-10

-5

0

5

10


1

time(s)
 

 

Fig. 4. Estimation results of δ1, ω1 for generator 1 of New England 39-bus
system with partial missing measurements.
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Fig. 5. Estimation results of δ2, ω2 for generator 2 of New England 39-bus
system with partial missing measurements.
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Fig. 6. Estimation results of δ4, ω4 for generator 4 of New England 39-bus
system with partial missing measurements.
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Fig. 7. Estimation results of δ9, ω9 for generator 9 of New England 39-bus
system with partial missing measurements.

TABLE I
PERFORMANCE COMPARISON OF EKF, UKF AND FTEKF FOR WECC-9

BUS SYSTEM WITH PARTIAL MISSING MEASUREMENTS

Metric EKF UKF FTEKF

eδ 0.5901 7.7831 0.1259

eω 0.2501 95.2186 0.0378

TABLE II
PERFORMANCE COMPARISON OF EKF, UKF AND FTEKF FOR NEW

ENGLAND-39 BUS SYSTEM WITH PARTIAL MISSING MEASUREMENTS

Metric EKF UKF FTEKF

eδ 1.1903 3.0148 0.1206

eω 0.0327 10.5028 0.0101

and the proposed FTEKF. As is shown in the figures, the pro-

posed fault tolerant EKF can track the dynamic states of each

synchronous generator in the WECC system accurately even

by utilizing the partial missing measurements, and provides

the better performance than the other discussed approaches.

To be specific, the standard EKF and UKF methods are failing

to provide the reliable estimate results, which reflects that

they are sensitive to the sensor data loss. Furthermore, it

can be noticed that unlike EKF and FTEKF approaches, the

UKF method exhibits numerical instabilities in the presence

of partial missing measurements.

In addition, the performance indices of the conventional

EKF, UKF and the proposed FTEKF approaches for the

WECC test system DSE with partial missing measurements

are summarized in Table 1. It can be found that the estimation

error of the proposed FTEKF is much smaller than the other

methods. These experimental results are in agreement with

the earlier observations, which further confirm the developed

FTEKF method is more robust and resilient against the sensor

data loss.

C. New England 39-bus System

In this scenario, all the discussed approaches are imple-

mented on the New England test system. All generators in this

test system are also assumed to have second-order classical

model. The standard deviation of system and measurement

noise is still set as 10−2; the error covariance matrix of state
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TABLE III
PERFORMANCE COMPARISON OF EKF, UKF AND FTEKF FOR NPCC-140

BUS SYSTEM WITH PARTIAL MISSING MEASUREMENTS.

Metric EKF UKF FTEKF

eδ 1.6107 56.5049 0.1194

eω 2.2584 30.9248 0.1597

ee′q
5.0257 10.3269 0.0326

ee′
d

16.1305 7.5742 0.0184

estimation for each discussed methods is the same, which is

initialized as 10−4I2n×2n.

The tracking results of EKF, UKF and the proposed method

are shown in Figs. 4-7. Due to the page limit, only the

generator 1, 2, 4 and 9 are randomly picked as examples, and

the remaining plots are omitted due to they do not contain any

additional valid information. It can be observed that the UKF

method cannot track the states of test system precisely, which

encounters numerical stability problem and makes its state es-

timation result diverge. The EKF approach can obtain a better

estimation performance than the standard UKF method, but

its estimation accuracy is still not acceptable. By contrast, the

FTEKF exhibits strong robustness and resilient against partial

missing measurements, resulting in the best state estimation

performance.

Similar to the WECC test system scenario, the estimation

error indices of each discussed approaches are also calculated

and summarized in the Table II. It can be seen that FTEKF

owns the smallest estimation error indices. These experimental

results are consistent with data obtained in the WECC system.

D. NPCC 140-bus System

The classical second-order model of generator is simple and

clear, and the interface between the generator and the power

grid is convenient. However, it cannot be utilized to track the

transient voltages e′q and e′d. Therefore, to further demonstrate

the efficacy of the proposed fault tolerant EKF and confirm

its scalability, the discussed methods are performed on the

NPCC test system [38]. Twenty seven generators utilize fourth-

order model and the remainder 21 have second-order classical

model. In this scenario, the standard deviation of system and

measurement noise is set as 10−2; the initial values of the

estimation error covariance matrix for the EKF, UKF and the

proposed FTEKF approaches are set as 10−4I150×150.

We implemented dynamic state estimation for each of the

discussed approaches and calculated the average values of the

system state estimation error index. The estimation results of

EKF, UKF and the developed FTEKF method are presented

in Figs. 8 and 9, due to space limitation, only the generator 6

is randomly picked as an example. The estimation error index

of each discussed methods are also presented in Table III.

As is shown in the figures, the estimated states from the

conventional EKF and UKF quickly diverge from the true

values; this reflects that they are sensitive to the partial missing

measurements. In contrast, the proposed FTEKF method is

still able to track the states of test system accurately. These

Fig. 8. Estimation results of δ6, ω6 for generator 6 of NPCC 140-bus system
with partial missing measurements.

Fig. 9. Estimation results of e′q6, e′
d6

for generator 6 of NPCC 140-bus

system with partial missing measurements.

estimation results are not only further confirm the strong

robustness of the FTEKF against partial missing measurements

but also demonstrate its good scalability.

E. Centralized versus Decentralized FTEKF

To meet the various advanced real-time applications of

EMS, the DSE approach for power system must have a good

computational efficiency. Therefore, to inspect whether the

developed FTEKF is able to catch up with PMUs at the

sampled rate between 30 samples/s and 60 samples/s. Fig.

10 shows the total running time of each of the discussed

approaches for the different test systems, which is the average

time of 200 Monte Carlo experiments under various condi-

tions. These experimental data verify that EKF, UKF and the

proposed FTEKF almost have the similar computing efficiency

for the same test system. To be specific, the execution time of

FTEKF is slightly larger than that of EKF, due to the more

complicated formulas. In addition, due to the utilization of

high-order generator model and the increase of system scale,

the calculation time of different methods for the NPCC system

increases significantly. However, the execution time of all the

discussed methods is much less than the sampling period 16.7

ms (60 samples/s).

Furthermore, it’s worth noting that although the proposed
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Fig. 10. Total execution time of each discussed approach for different test
system.

FTEKF method is implemented in a centralized way, it can

also be executed in a distributed form. The results show that

FTEKF approach has good scalability and can be applied to

multi-machine power system. For instance, by adopting the

method in [37], the dynamic equations of each generation unit

can be decoupled from system. Then, the resilient FTEKF can

be adopted to track the dynamic state variable of system with

only local PMU measurements. Therefore, the computational

efficiency of FTEKF can satisfy the needs of large scale multi-

machine power system calculation and analysis.

V. CONCLUSIONS

Accurate dynamic state estimation under measurement noise

and partial missing measurements is critical for the energy

management system in modern smart grid. To deal with these

issues, in this paper, a discrete distribution in the interval

[0,1] was introduced to model and depict the partial missing

measurements of power system first. Subsequently, a robust

and resilient fault tolerant EKF approach has been designed

to mitigate the adverse influence of partial missing measure-

ments on the state estimation accuracy. Experimental data

demonstrate that the proposed method can acquire superior

estimation accuracy than the standard EKF and UKF methods

for different test system with partial missing measurements,

which has the strong robustness and resilience against sensor

failure. However, it is worth pointing out that the inputs in

the model are assumed to be known, which sometimes may

not be the case in reality. The dynamic state estimation of

power system with unknown inputs (Tm or Efd) under the

framework of this paper will be specially investigated in the

future.

APPENDIX

In this section, the detailed derivation process of the pro-

posed FTEKF approach are presented.

Proof:

Considering the state space model in (10), if the conditions

in (21) are satisfied, the proposed recursive filter can be

formulated as follows

x̃k+1 = f (x̂k,uk) , (31)

x̂k+1 = x̃k+1 +Kk+1

[
yk+1 −Ξk+1h (x̃k+1,uk+1)

]
. (32)

Based on (9), (31) and (32), the prior state estimation error

ẽk+1 and the posterior state estimation error êk+1 can be

calculated by

ẽk+1 = xk+1 − x̃k+1

= f (xk,uk) +wk − f (x̂k,uk) , (33)

êk+1 =xk+1 − x̂k+1 = f (xk,uk) +wk − x̃k+1

−Kk+1

[
yk+1 −Ξk+1h (x̃k+1,uk+1)

]
.

(34)

Expanding f (·) and h (·) into Taylor series at x̂k and

x̃k+1, respectively. After neglecting the higher order terms,

the following equations can be derived

{
f (xk,uk) = f (x̂k,uk) + Fkêk

Fk = ∂f(xk,uk)
∂xk

∣∣∣
xk=x̂k

, (35)

{
h (xk+1,uk+1) = h (x̃k+1,uk+1) +Hk+1ẽk+1

Hk+1 = ∂h(xk+1,uk+1)
∂xk+1

∣∣∣
xk+1=x̃k+1

. (36)

Utilizing (35)-(36), the equations (33) and (34) can be

approximated by

ẽk+1 = Fkêk +wk, (37)

êk+1 =f (x̂k,uk) + Fkêk +wk − f (x̂k,uk)

−Kk+1

[ (
Ξk+1 − Ξ̄k+1

)
h (x̃k+1,uk+1)

+vk+1 +Ξk+1Hk+1ẽk+1

]

=(I −Kk+1Ξk+1Hk+1) ẽk+1

−Kk+1Ξ̃k+1h (x̃k+1,uk+1)−Kk+1vk+1. (38)

According to (37), the error covariance matrix of state

prediction P̃k+1 at the time instant k + 1 can be derived as

follows

P̃k+1 = E
[
ẽk+1 (ẽk+1)

T
]

= FkP̂kF
T
k +Qk. (39)

Similarly, the posterior state estimation error covariance

matrix P̂k+1 can be evolved as

P̂k+1 =E
[
êk+1 (êk+1)

T
]

=E {[(I −Kk+1Ξk+1Hk+1) ẽk+1 −Kk+1vk+1

−Kk+1Ξ̃k+1h (x̃k+1,uk+1)
]

× [(I −Kk+1Ξk+1Hk+1) ẽk+1 −Kk+1vk+1

−Kk+1Ξ̃k+1h (x̃k+1,uk+1)
]T}

=
3∑

m̂=1

3∑

n̂=1

P̂k+1(m̂n̂), (40)



9

where P̂k+1(m̂n̂) are equal to the following:

P̂k+1(11) = (I −Kk+1Ξk+1Hk+1) P̃k+1

× (I −Kk+1Ξk+1Hk+1)
T
, (41)

P̂k+1(22) =Kk+1E
(
vk+1v

T
k+1

)
KT

k+1

=Kk+1Rk+1K
T
k+1, (42)

P̂k+1(33) =Kk+1E

[
Ξ̃k+1h (x̃k+1,uk+1)×

hT (x̃k+1,uk+1) Ξ̃
T
k+1

]

×KT
k+1, (43)

P̂k+1(12) =− (I −Kk+1Ξk+1Hk+1)

× E (ẽk+1vk+1)
T
KT

k+1, (44)

P̂k+1(13) =− (I −Kk+1Ξk+1Hk+1)

×E
[
ẽk+1h

T (x̃k+1,uk+1) Ξ̃
T
k+1

]
KT

k+1, (45)

P̂k+1(23)=Kk+1E
(
vk+1h

T(̃xk+1,uk+1)Ξ̃
T
k+1

)
KT

k+1, (46)

P̂k+1(21) =
(
P̂k+1(12)

)T

, (47)

P̂k+1(31) =
(
P̂k+1(13)

)T

, (48)

P̂k+1(32) =
(
P̂k+1(32)

)T

. (49)

Due to wk, ek, vk and Ξ̃k+1 are mutually uncorrelated

[23], [24], the results of P̂k+1(12), P̂k+1(13), P̂k+1(23),
P̂k+1(21), P̂k+1(31), P̂k+1(32) are zeros. Therefore, (40) can

be derived as follows

P̂k+1 =(I −Kk+1Ξk+1Hk+1) P̃k+1

× (I −Kk+1Ξk+1Hk+1)
T
+Kk+1Rk+1K

T
k+1

+Kk+1E
[
Ξ̃k+1h (x̃k+1,uk+1)

×hT (x̃k+1,uk+1) Ξ̃
T
k+1

]
KT

k+1. (50)

According to the Lemma 1, the following equation can be

derived

∂ tr
(
P̂k+1

)

∂Kk+1
=− 2 (I −Kk+1Ξk+1Hk+1) P̃k+1H

T
k+1Ξ

T
k+1

+ 2Kk+1

{
E
[
Ξ̃k+1h (x̃k+1,uk+1)

×hT (x̃k+1,uk+1) Ξ̃
T
k+1

]}
+ 2Kk+1Rk+1.

(51)

Let (51) equal to zero, the optimal filter gain Kk+1 can be

acquired as follows

Kk+1 =
(
P̃k+1H

T
k+1Ξ

T
k+1

)

×
[
Ξk+1Hk+1P̃k+1H

T
k+1Ξ

T
k+1

+ E
(
Ξ̃k+1h (x̃k+1,uk+1)

×hT (x̃k+1,uk+1) Ξ̃
T
k+1

)
+Rk+1

]−1

. (52)

Based on the Lemma 2, (52) can be reformulated as follows

Kk+1 =
(
P̃k+1H

T
k+1Ξ

T
θ+1

)

×
[
Ξk+1Hk+1P̃k+1H

T
k+1Ξ

T
θ+1

+ Ξ̂k+1 ⊗ E (h (x̃k+1,uk+1)

×hT (x̃k+1,uk+1)
)
+Rk+1

]−1
. (53)

This completes the proof of the developed FTEKF.
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