162 research outputs found

    The Evaluation method of HVAC System’s operation performance based on Energy Flow Analysis and DEA

    Get PDF
    An energy flow model of an airport terminal’s HVAC system is established in this paper. Based on energy flow model, the exergy efficiency, exergy loss and exergy cost distribution ratio of each component are calculated and analyzed by the energy flow model. Optimization method and exergy balance equations are used to calculate the least exergy loss of HVAC system under certain operation condition, which is defined as the near-optimum operation level. DEA method is then applied to obtain the benchmarking frontier of near-optimum operation levels, and the frontier will illustrate the ideal operation level under overall operation conditions. In order to measure the gap between actual operation level and ideal operation level, a new index—control perfect index (CPI) is defined by the ratio between the actual exergy loss and exergy loss of ideal operation level of HVAC system, and it can reflect control influences on operation performance of HVAC system. Thus, a new evaluation method is presented which regards ideal operation level as the benchmark and uses CPI to evaluate actual operation performance of HVAC system. Two kinds of control strategies, optimal supply air temperature reset strategy (SAT Strategy) and optimal load allocation control strategy are implemented to validate this evaluation method. Test’s results show that optimal load allocation control strategy can improve the operation performance of the system more greatly than the SAT Strategy. This evaluation method not only can evaluate the operation performance of HVAC system, but also can indicate the direction of optimal control of HVAC system

    Decelerating Airy pulse propagation in highly non-instantaneous cubic media

    Get PDF
    The propagation of decelerating Airy pulses in non-instantaneous cubic medium is investigated both theoretically and numerically. In a Debye model, at variance with the case of accelerating Airy and Gaussian pulses, a decelerating Airy pulse evolves into a single soliton for weak and general non- instantaneous response. Airy pulses can hence be used to control soliton generation by temporal shaping. The effect is critically dependent on the response time, and could be used as a way to measure the Debye type response function. For highly non- instantaneous response, we theoretically find a decelerating Airy pulse is still transformed into Airy wave packet with deceleration. The theoretical predictions are confirmed by numerical simulations

    An energy-saving control strategy for VRF and VAV combined air conditioning system in heating mode

    Get PDF
    Although variable refrigerant flow (VRF) systems have become attractive due to good energy performances in part load conditions, the shortcoming of no outdoor air intake has not been solved thoroughly. A VRF and VAV combined air conditioning system is proposed to solve this problem. VAV part of the combined system consists of an outdoor air processing (OAP) unit and VAV boxes. Generally the VRF unit operates to maintain indoor temperature and the OAP unit operates to process the outdoor air. A control strategy for the combined system aiming at reducing energy consumption is presented in this paper. When both VRF unit and OAP unit are operating, a load allocation optimization module is executed to find the best load allocation between them to minimize the energy consumption of the combined system. When the allocated load of the OAP unit is very small, the proposed control strategy stops the OAP unit, leaving only the VRF unit to operate to improve the overall energy efficiency of the combined system. When load requirements are met, the OAP unit is restarted and the load allocation optimization module is executed again. The proposed control strategy is evaluated based on the developed simulation platform. Results show that the proposed control strategy can effectively decrease the energy consumption of the combined system

    Design and Implementation WiMAX Transceiver on Multicore Platform

    Get PDF
    Before we design the WiMAX Base Station (BS), three questions we should answered. The first is what kind of system parameters will be selected? The second is which platform will be used for the BS design. And the third one is which algorithm will be selected for some modules that are not defined in 16e standard, especially for the receiver modules, such as synchronization, channel estimation, and STC (Space Time Coding) decoder, etc. When all the above questions obtain proper answers, we can start the BS design and implementation on specific platform to achieve aimed system performance. In this chapter, we will focus on the PHY (physical Layer) design of WiMAX BS

    An Optimal Method For Product Selection By Using Online Ratings And Considering Search Costs

    Get PDF
    With the collecting and publishing data about consumers purchasing and browsing products at the platform of online, this data prodives new ways to better understand the consumers search behavior before purchase. How to base on consumers online search behavior and simutaneously consider offline experience costs is worth studying. An optimal method based on the utility of the attribute of product is proposed. The proposed method follows steps below. Firstly, based on the multi-attribute utility theory, the overall utility of product is calculated by using ratings data. Secondly, the overall utility is combined into the original sequential search model to find the optimal selection strategy. Thirdly, the candidate product sets arranged in descending order of the reservation utilities are finally obtained. Finally, taking the online ratings data provided by a comprehensive automobile website as an example, lastly the proposed method is simulated and compared with other method. The result shows that the proposed method is feasible and effective

    Distributed target-encirclement guidance law for cooperative attack of multiple missiles

    Get PDF
    The target-encirclement guidance problem for many-to-one missile-target engagement scenario is studied, where the missiles evenly distribute on a target-centered circle during the homing guidance. The proposed distributed target-encirclement guidance law can achieve simultaneous attack of multiple missiles in different line-of-sight directions. Firstly, the decentralization protocols of desired line-of-sight angles are constructed based on the information of neighboring missiles. Secondly, a biased proportional navigation guidance law that can arbitrarily designate the impact angle is cited. The missiles can achieve all-aspect attack on the target in an encirclement manner by combining the biased proportional navigation guidance law and dynamic virtual targets strategy. Thirdly, the consensus protocol of simultaneous attack is designed, which can guarantee that all missiles’ time-to-go estimates achieve consensus asymptotically, and the convergence of the closed-loop system is proved strictly via the Lyapunov stability theory. Finally, numerical simulation results demonstrate the performance and feasibility of the proposed distributed target-encirclement guidance law in different engagement situations

    Distributed optimal deployment on a circle for cooperative encirclement of autonomous mobile multi-agents

    Get PDF
    A distributed encirclement points deployment scheme for a group of autonomous mobile agents is addressed in this paper. Herein, each agent can measure its own azimuth related to the common target and can at least communicate with its two adjacent neighbors. Given its space-cooperative character, the encirclement points deployment problem is formulated as the coverage control problem on a circle. The measurement range of azimuth sensor is taken into consideration when doing problem formulation, which is closer to the facts in real-world applications. Then, the fully distributed control protocols are put forward based on geometric principle and the convergence is proved strictly with algebraic method. The proposed control protocols can steer the mobile agents to distribute evenly on the circle such that the coverage cost function is minimized, and meanwhile the mobile agents' spatial order on the circle is preserved throughout the systems' evolution. A noteworthy feature of the proposed control protocols is that only the azimuths of a mobile agent and its two adjacent neighbors are needed to calculate the mobile agent's control input, so that the control protocols can be easily implemented in general. Moreover, an adjustable feedback gain is introduced, and it can be employed to improve the convergence rate effectively. Finally, numerical simulations are carried out to verify the effectiveness of the proposed distributed control protocol

    Association of Combined Maternal-Fetal TNF-α Gene G308A Genotypes with Preterm Delivery: A Gene-Gene Interaction Study

    Get PDF
    Preterm delivery (PTD) is a complicated perinatal adverse event. We were interested in association of G308A polymorphism in tumor necrosis factor-α (TNF-α) gene with PTD; so we conducted a genetic epidemiology study in Anqing City, Anhui Province, China. Case families and control families were all collected between July 1999 and June 2002. To control potential population stratification as we could, all eligible subjects were ethnic Han Chinese. 250 case families and 247 control families were included in data analysis. A hybrid design which combines case-parent triads and control parents was employed, to test maternal-fetal genotype (MFG) incompatibility. The method is based on a log-linear modeling approach. In summary, we found that when the mother's or child's genotype was G/A, there was a reduced risk of PTD; however when the mother's or child's genotype was genotype A/A, there was a relatively higher risk of PTD. Combined maternal-fetal genotype GA/GA showed the most reduced risk of PTD. Comparison of the LRTs showed that the model with maternal-fetal genotype effects fits significantly better than the model with only maternal and fetal genotype main effects (log-likelihood = −719.4, P = .023, significant at 0.05 level). That means that the combined maternal-fetal genotype incompatibility was significantly associated with PTD. The model with maternal-fetal genotype effects can be considered a gene-gene interaction model. We claim that both maternal effects and fetal effects should be considered together while investigating genetic factors of certain perinatal diseases

    Snow identification from unattended automatic weather stations images using DANet

    Get PDF
    Identifying snow phenomena in images from automatic weather station (AWS) is crucial for live weather monitoring. In this paper, we propose a convolutional neural network (CNN) based model for snow identification using images from AWS cameras. The model combines the attention mechanism of the DANet model with the classical residual network ResNet-34 to better extract the features of snow cover in camera images. To improve the generalizability of the model, we also use images from public datasets in addition to images taken by cameras from unmanned weather stations. Our results show that the proposed model achieved a POD of 91.65%, a FAR of 7.34% and a TS score of 85.45%, demonstrating its effectiveness in snow identification. This study has the potential to facilitate more efficient and effective weather monitoring in a variety of locations
    corecore