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Abstract: The propagation of decelerating Airy pulses in non-instantaneous cubic medium is 
investigated both theoretically and numerically. In a Debye model, at variance with the case 
of accelerating Airy and Gaussian pulses, a decelerating Airy pulse evolves into a single 
soliton for weak and general non-instantaneous response. Airy pulses can hence be used to 
control soliton generation by temporal shaping. The effect is critically dependent on the 
response time, and could be used as a way to measure the Debye type response function. For 
highly non-instantaneous response, we theoretically find a decelerating Airy pulse is still 
transformed into Airy wave packet with deceleration. The theoretical predictions are 
confirmed by numerical simulations. 
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1. Introduction

Finite energy Airy beam, solutions to the free-particle Schrödinger equation [1], was first 
introduced theoretically [2] and later realized experimentally [3] by Christodoulides and 
associates in 2007. These results attracted considerable attention because of the evidence of 
self-acceleration, self-healing and quasi-diffraction-free [2–4]. Airy beams trigger many 
applications, including the formation of curved filamentation [5, 6], the manipulation of 
micro particles [7, 8], high-resolution microscopy [9, 10], all-optical routing [11], and the 
generation of spatiotemporal light bullets [12–14]. Also in the temporal domain, Airy pulses 
were studied theoretically [2, 3] and experimentally [12, 13]. The self-bending trajectory of 
Airy beams in the spatial domain turns into a self-accelerating or self-decelerating dynamics 
for temporal Airy pulses. The dynamics is controlled by the shape of the pulse profile [15] 
and many researchers investigate the possible applications in pulse transmission [15–30]. 

Airy wave packets are non-spreading solutions in the linear regime. One expects that 
nonlinear effects may deform and destroy these wave-packets [19]. However, Giannini and 
Joseph derived temporal self-accelerating solutions in nonlinear Kerr media as early as 1989. 
These solutions are given in terms of Painlevé transcendents of second type [31]. Other 
authors also demonstrated self-trapped Airy beams in nonlinear media with different kinds of 
nonlinearity [32–37]. In particular, Bekenstein et al. considered self-accelerating beams in 
highly nonlocal nonlinear optical media, in which boundary conditions strongly affect 
propagation dynamics [35]. In analogy to spatial nonlocal media, a non-instantaneous 
response as the Raman effect leads to several interesting phenomena in temporal domain [38, 
39]. The Raman effect is largely enhanced with respect to silica glass fibers [40] by 
considering materials as tellurite glasses [41]. In addition, the recently developed photonic 
crystal fibers filled with molecular liquids offer an unprecedented platform highly non-
instantaneous nonlinear optics [42–45]. The non-instantaneous nonlinear response alters self-
focusing of light beam [46, 47], spatiotemporal modulation instability [48], the formation of 
temporal incoherent solitons [49], and solitons [50]. 

Prior studies on temporally nonlocal nonlinearity mostly considered pulses with 
symmetric profiles as hyperbolic secant and Gaussian pulses. Airy pulses have an asymmetric 
profile with rapidly oscillating tails and complex propagation dynamics [15–30]. We expect 
that the asymmetry of Airy pulses may lead to fairly non-trivial dynamics because of the 
time-asymmetric response function of non-instantaneous media that derives from causality 
[15]. Exploring asymmetric pulses in combination with the non-instantaneous nonlinearity 
may open new interesting perspective in pulse shaping and in the control of highly nonlinear 
processes as supercontinuum generation. As shown by Deng et al., Airy-type solitary waves 
are generated by accelerating Airy pulse in the highly non-instantaneous Kerr media [51]. A 
very intriguing possibility however is given by the decelerating Airy pulses as these may 
counteract the retarded action of the nonlinearity. Loosely speaking one may expect that if the 
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pulse reduces its velocity and its tails propagate in front of the main lobe, its main lobe 
becomes synchronous with nonlinearity induced by the retarded nonlinear response and 
ultimately the medium behaves as an instantaneous medium. 

In the present work we will investigate the propagation dynamics of decelerating Airy 
pulse in a medium with non-instantaneous Kerr nonlinear response in which the nonlinear 
contribution to the refractive index is governed by a relaxing Debye type equation. We study 
the effect of the response time and demonstrate that in critical conditions the retarded 
nonlinearity and the deceleration develop and change simultaneously as well as generate an 
accelerated soliton with negative acceleration. 

2. Theoretical model 

We consider the nonlinear Schrödinger equation accounting for a Debye type relaxation 
effect, which is written in the following dimensionless form [49, 50] 

 ( ) ( )
2

22
2

1 0.
2

U Ui s N U R T T U T dT
Z T

s
+∞

−∞

∂ ∂ ′ ′ ′+ + − =
∂ ∂ ∫  (1) 

Here, the field amplitude ( ),U T Z  is normalized such that its peak is equal 1. 

( ) ( ) ( )R T T h T≡ Θ  is the response function with ( ) ( )exp r rh T T T T= − , 0r rT t t= , ( )tΘ  
is the Heaviside function (zero for 0T <  and unity for 0T > ), rt  and 0t  are the response 
time and the pulse width. The other dimensionless variables are defined as 

 ( ) ( )0 2
0

, , , sgn , sgn .g
D

D

t z v zT Z N P L s
t L

g β s g
−

= = = = =     (2) 

Where 0P  is the peak power of input pulse, gv  is the group velocity, γ  is nonlinear 

parameter, 2
0 2DL t β=  is the dispersion length, 2β  is the group-velocity dispersion. 1s = −  

( 1s = + ) represents normal (anomalous) dispersion, 1σ = −  ( 1σ = + ) denotes defocusing 
(focusing) nonlinearity. 

The initial decelerating Airy pulse is ( ) ( ) ( ) ( ),0 Ai expU T f a T aT=  with 0 1a< < . 

( )f a  keeps the maximum amplitude of initially launched pulse to 1 for any values of a . We 
use the standard split-step Fourier method to numerically solve Eq. (1) [40]. 

3. Theoretical results 

Based on the method used in [50], as 1rT  , Eq. (1) can be written as 

 ( )
2

2 0.
2

U s Ui R T U
Z T

s∂ ∂
+ + =

∂ ∂
 (3) 

For 0T < , ( ) 0R T = , Eq. (3) is reduced as follows 

 
2

2 0.
2

U s Ui
Z T

∂ ∂
+ =

∂ ∂
 (4) 

Its solution can be written as 
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22 2 3 3
1

1 1, exp .
4 2 12 2 2

sa ZZ Z is Z sTZU Z T Ai T isa Z a T i i
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 (5) 
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For 0T > , we have rR T= Ε  independent of T , and neglect all other terms. Equation (3) 
becomes 

 
2

2 0.
2 r

U s Ui U
Z TT

s∂ ∂ Ε
+ + =

∂ ∂
 (6) 

Where ( ) 22N U T dT
∞

−∞
′ ′Ε = ∫  is proportional to the total power of photons launched into the 

fiber. The solution of Eq. (6) reads 

 ( )
22 2 3 3
2

2 2, exp .
4 2 12 2 2 r

sa ZZ Z is Z sTZ ZU Z T Ai T isa Z a T i i i
T
s     Ε

= − + − − + + +    
    

(7) 

Note that this solution has a truncation coefficient 2a  which is different from 1a  in Eq. (5), 
and there is the additional phase factor (nonlinear phase) RTσΕ . However, these two 
solutions must match at 0T = , the phase factors must match and hence we have 

 
2 2
1 2 2 .

2 2 r

sa sa n
T
s πΕ

= + +  (8) 

This equation has a number of consequences: As there are many solutions (varying n = 0, 1, 
2, …) one can have multiple Airy pulses for 0T >  with different 2a  coefficient; The ground 
state solution will exist only if 2a  is positive, and this implies some critical values; With the 
phase-matching condition we also have an amplitude matching, but this is assumed to be an 
higher order effect that implies some changes in the amplitudes with respect the linear Airy 
beams. 

It can be obtained from Eq. (8) that the existence condition of fundamental solution 0n =  
is 

 
2 2
2 1 0,

2 2 r

a a s
T
sΕ

= − >  (9) 

which implies that for 0ss <  one always has a solution. On the contrary for 0ss >  a 
solution only exist if 

 
2
1 .
2 r

a
T
Ε

≥  (10) 

It implies critical values for RT  and Ε , thus for the critical values is 

 
2
1 .
2r cr

a
T
 Ε

= 
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 (11) 

It should be noted from Eq. (9) that 2a  is zero when Ε  and rT  satisfy the Eq. (11). Then Eq. 
(7) represents infinite energy Airy pulse. 

4. Numerical results 

Figure 1 shows the propagation dynamics of decelerating Airy pulse with 0.03a =  and 
2N =  as a function of propagation distance in non-instantaneous nonlinear focusing Kerr 

medium with different response time rT  and anomalous dispersion. This corresponds to 
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0ss > . Figure 1 shows that the propagation dynamics of decelerating Airy pulse vary with 
the value of response time rT . Figure 1(a) shows the case 0rT = , in which the nonlinearity is 
instantaneous response [19, 20]. In this case, the main lobe of decelerating Airy pulse is able 
to shed soliton. The shedding soliton undergoes successive collision with the other 
decelerating side lobes, and then becomes stable. Due to the self-healing property of Airy 
pulse, the rest of decelerating Airy pulse reconstructs a new Airy pattern. The propagation 
dynamic of decelerating Airy pulse changes drastically when 0rT ≠ . For 0.1rT = , we find 
three trajectories marked with numbers 1, 2, and 3. Trajectory one originates out of the main 
lobe with the strongest bending and deceleration. When the response time increases ( =0.5rT ) 
trajectories 2 and 3 merge with periodically oscillations. The curvature of trajectory 1 
becomes smaller compared to that in Fig. 1(b). For rT  in the range from 2.0 to 4.0, all 
trajectories merge become stable. For even larger values of rT , see Fig. 1(f), such stable 
dynamics is broken down, manifesting the peak intensity decreases. These propagation 
dynamics are very similar to that of linear propagation of decelerating Airy pulse [2, 3]. 

 

Fig. 1. Temporal evolution of decelerating Airy pulse with 0.03a =  in non-instantaneous 
Kerr nonlinear medium with 2N =  and different response time rT . 

Figure 1 shows that there is a critical value of response time for the formation of stable 
Airy-like dynamics under the fixed value of N . For 2N =  and 0.03a = , the critical value 
of rT  is about 4. We carried out a series of numerical experiments for observing the stable 
Airy-like dynamics by varying the response time rT  and the nonlinear parameter N . The 
corresponding numerical results are shown in Fig. 2. Figure 3(a) shows the dependence of the 
critical values of response time c

rT  on the parameter N . As N  is increased, the nonlinear 
contribution is enhanced. But nonlinearity decrease with an increase rT . By choosing suitable 
values of rT  and N , their contributions will be counteracted. This trend can also be found 
from Eq. (11). 
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Fig. 2. Stable temporal evolution of decelerating Airy pulse with 0.03a =  in non-
instantaneous Kerr nonlinear medium with different response time rT  and nonlinearity N . 

 

Fig. 3. The critical values of the response time c
rT  is plotted as a function of (a) nonlinearity 

N  and (b) the truncation coefficient N . 

The truncation coefficient a  also determines the unique features of decelerating Airy 
pulse [2, 3]. Figure 4 shows the impact of truncation coefficient on the propagation dynamics 
of decelerating Airy pulse in non-instantaneous nonlinear Kerr medium with 4rT =  and 

2N = . When a  is below 0.03, the main lobe not only becomes stable but also contains more 
power. For 0.03a > , [Figs. 4(g)-4(i)], the main lobe first undergoes an initial reshaping 
phase in the first two propagation distances. Also the main lobe peak intensity decreases. As 
was seen in Fig. 4, there is a critical value of truncation coefficient for the formation of stable 
peak intensity. The relationship between the critical values of response time and the 
truncation coefficient a  for 8.83N =  is shown in Fig. 3(b). These findings may be justified 
by recalling that the total power of decelerating Airy pulse is given by 

( )31 8 exp 2 3totalE a ap=  [2] and increases with a , hence N  must scale accordingly to 
maintain the value of nonlinearity. This is consistent with the theoretical predictions from Eq. 
(11). 
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Fig. 4. Temporal evolutions of decelerating Airy pulse with different values of truncation 
coefficient in non-instantaneous Kerr nonlinear medium with the parameters 4rT =  and 

2N = . 

In the limit of a highly temporal nonlocal response, where ( )R T  is much broader than the 
intensity profile, the theoretical results presented in Sec. 3 indicate the shape of Airy pulse is 
unchanged during the propagation. To verify these theoretical predictions, we simulated the 
propagation dynamics of decelerating Airy pulse with 0.03a =  and 2N =  in highly non-
instantaneous cubic media, shown in Figs. 5(a)-5(c). In these three cases, the propagation 
processes are almost same. They should be compared with Fig. 5(d) where the case of linear 
propagation of decelerating Airy pulse is shown. There are no differences between the 
decelerating Airy pulse propagation in highly non-instantaneous media and that in linear 
media. This is very agreement with the theoretical predictions obtained from Eq. (7). For 

0.03a =  and 2N = , one yields 7.0Ε ≈ . Therefore, the larger rT , the smaller rTΕ . And 
such that 2a  is very close to 1a . This means that the evolution of decelerating Airy pulse in 
highly non-instantaneous cubic media is almost same as that in linear dispersive media. We 
also check the peak intensity and the corresponding position as a function of the propagation 
distance. The results are shown in Figs. 5(e) and 5(f). It is clearly seen from Figs. 5(e) and 
5(f) that the all curves are overlapping. The theoretical results from Eq. (7) are confirmed by 
numerical simulations once again. 

In order to clarify the novel behavior observed in Fig. 2 especially due to the decelerating 
nature of the incident pulse, Fig. 6 depicts the accelerating Airy pulse propagation in highly 
non-instantaneous cubic media with the same parameter values used in Figs. 2(a)-2(c). This 
results should be compared with Figs. 2(a)-2(c) where the case of a decelerating pulse is 
shown. The differences between the two can be attributed to the acceleration and deceleration 
of the input pulse, which depending on whether the tail orientation is in front of or behind the 
main lobe. For the case of accelerating Airy pulse, Fig. 6 shows a part of energy is shed from 
the main lobe, and form a well-resolved prominent spike. The intensity of spike decreases 
with an increasing rT . Although such spike collides with side lobes, the rest of the 
accelerating Airy pulse continues to accelerate owing to its unique properties of self-
accelerating and self-healing. 
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Fig. 5. Temporal evolution of decelerating Airy pulse with 0.03a =  and =2N  in (a-c) 
highly non-instantaneous cubic media and (d) linear media. The corresponding (e) Peak 
intensity (PI) and (f) position of PI as a function of propagation distance. 

 

Fig. 6. Temporal evolution of accelerating Airy pulse with 0.03a =  in non-instantaneous 
Kerr nonlinear medium with different response time rT  and nonlinearity N . 

We track the nonlinear, intensity-dependent additive to the refractive index 

( ) ( ) ( ) 2
, exp ,r rn T Z T T T T U T Z dTd

+∞

−∞
′ ′ ′= −∫  during the nonlinear propagation in order to 

gain more physical insights. For the instantaneous case, ( ) ( ) 2
, ,n T Z U T Zδ ′= , manifesting 

that the nonlinear refractive changes simultaneously with the pulse. Figure 7 shows the 
evolution of nδ  when accelerating and decelerating pulses propagate in non-instantaneous 
cubic media with 2N =  and =4rT . Figure 7(a) indicates the accelerating Airy pulse has a 
force to counteract the retarded nonlinearity. As a result, the non-instantaneous nonlinearity 
decrease quickly after about 4 propagation distances. However, the decelerating Airy pulse is 
synchronous with the retarded nonlinearity, see Fig. 7(b). Consequently, a stable potential 
well is formed to support an accelerated soliton because the deceleration of pulse 
compensates the retarded nonlinearity. The reason can be understood by recalling the self-
healing and accelerating properties. For the purpose of facilitating self-healing, the energy 
flux of Airy pulse from the side lobes towards the main lobe [2], leading to a curvature of the 
trajectory of the main lobe. On the other hand, in the anomalous-dispersion regime low-
frequency (red-shifted) components of an optical pulse travel slower than high-frequency 
(blue-shifted) of the same pulse [40]. During the linear propagation, therefore, the main lobe 
of accelerating Airy pulse only contains the high-frequency (blue-shifted) components, while 
the main lobe of decelerating Airy pulse has the low-frequency (red-shifted) components. 
This difference between accelerating and decelerating Airy pulse is clearly observed by using 
time–frequency analysis [29]. The retarded response is able to accumulate the nonlinearity to 
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the trailing edge of the pulse. As a consequence, the main lobe of decelerating Airy pulse 
experiences larger nonlinearity than that of accelerating one, resulting in the formation of 
soliton with deceleration. 

 

Fig. 7. The change of nonlinear refractive ( ),n T Zδ  as a function of propagation distance 

for (a) accelerating and (b) decelerating Airy pulses propagation in non-instantaneous Kerr 
nonlinear medium. 

 

Fig. 8. Temporal evolution of (a) Gaussian pulse and (b) decelerating Airy pulse (DAiP) with 
0.03a =  in non-instantaneous nonlinear medium. (c) Peak intensity (PI) and the position of 

PI along propagation. (d) Output pulse shapes at 15Z = . 

Figure 8(a) shows the temporal evolution of Gaussian pulse as a function of the 
propagation distance in non-instantaneous response nonlinear Kerr medium with 4rT =  and 

2N = . From the comparison with the decelerating Airy beams, we see that a Gaussian pulse 
shows a weak peak with a long pedestal displays slow deceleration. These difference are also 
evident in Fig. 8(c) and 8(d). For a Gaussian pulse propagation, in Fig. 8(c), the peak intensity 
decreases with an increase in the propagation distance. For decelerating Airy pulse 
propagation, the peak intensity remains almost unchanged in first 1.8 propagation distances, 
then decreases with an increasing propagation distance in the range of 1.8 4Z< < ; with 
further increasing propagation distance, the peak intensities are almost unchanged. That 
indicates the peak intensity enhancement after first four propagation distances. The intensity 
enhancement of the main lobe is illustrated in Fig. 8(d) where the output pulse profile is 
compared with the Gaussian case. The Gaussian input is completely destroyed with a long tail 
and weak peak intensity. The position of peak intensity corresponding to the trajectory of the 

                                                                                                     Vol. 25, No. 3 | 6 Feb 2017 | OPTICS EXPRESS 1865 



main lobe is also shown in Fig. 8(c) as a function of propagation distance Z . In the first three 
propagation distances, their peak intensity positions always remain the same. With further 
increase the propagation distances, the amount self-deceleration of the main lobe of Airy 
pulse propagation is larger than that of Gaussian pulse propagation. This process is very 
different from that in instantaneous response Kerr medium in which the Airy pulse emits 
soliton [19–21]. 

5. Conclusion 

In summary, we have studied the impact of finite nonlinear response time of Kerr medium on 
the decelerating Airy pulse propagation. We found that, for weak and general Debye type 
non-instantaneous response, the non-instantaneous Kerr nonlinearity can be used to control 
decelerating Airy pulse propagation, leading to trajectory reshaping and enhancement of the 
main lobe intensity. The main lobe of decelerating Airy pulse evolves to form a single 
intensity-enhanced soliton with deceleration, this does not occur for accelerating Airy and 
Gaussian input pulses. Small truncation coefficient is helpful for the formation of decelerating 
intensified main lobe. We determined the dependence of the critical values of response time 
on the truncation coefficients and input peak power of decelerating Airy pulse for the 
accelerated soliton formation. For highly non-instantaneous response, we have theoretically 
found the decelerating Airy pulse still exhibits Airy wave packet with different acceleration. 
These results may prove useful for manipulating and exploiting various important 
applications of decelerating Airy pulse. 
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