40 research outputs found
Enhanced Management of Personal Astronomical Data with FITSManager
Although the roles of data centers and computing centers are becoming more
and more important, and on-line research is becoming the mainstream for
astronomy, individual research based on locally hosted data is still very
common. With the increase of personal storage capacity, it is easy to find
hundreds to thousands of FITS files in the personal computer of an
astrophysicist. Because Flexible Image Transport System (FITS) is a
professional data format initiated by astronomers and used mainly in the small
community, data management toolkits for FITS files are very few. Astronomers
need a powerful tool to help them manage their local astronomical data.
Although Virtual Observatory (VO) is a network oriented astronomical research
environment, its applications and related technologies provide useful solutions
to enhance the management and utilization of astronomical data hosted in an
astronomer's personal computer. FITSManager is such a tool to provide
astronomers an efficient management and utilization of their local data,
bringing VO to astronomers in a seamless and transparent way. FITSManager
provides fruitful functions for FITS file management, like thumbnail, preview,
type dependent icons, header keyword indexing and search, collaborated working
with other tools and online services, and so on. The development of the
FITSManager is an effort to fill the gap between management and analysis of
astronomical data.Comment: 12 pages, 9 figures, Accepted for publication in New Astronom
Laboratory experimental study of water drag force exerted on ridge keel
With the diminishing Arctic sea ice, the dynamic energy-exchange process between sea ice and ocean gains in importance. Concerning how the ice bottom topography affects the drift of sea ice, it is unclear how the ridge–keel-drag force exerted by seawater changes the momentum balance of sea ice. We thus conducted laboratory experiments to investigate how the local drag coefficient of the ridge keel depends on keel shape and on the relative velocity of ice with respect to seawater. A dimensional analysis is used to obtain the relationship between the local drag coefficient Cr, the Reynolds number Re, the dimensionless keel depth h0, and the keel slope angle φ. The results indicate that the local drag coefficient Cr is only relevant to Re when Re < 4000 and the flow is in the laminar regime. With increasing Re, Cr depends on h0 and φ, which are independent variables, as the flow transitions to the turbulent regime. The parameterization formulas for Cr are also provided
Novel repressor regulates insulin sensitivity through interaction with Foxo1
This study characterizes a novel Foxo1 CoRepressor (FCoR) that regulates insulin sensitivity and energy metabolism as revealed by whole-body knockout. As target of PKA phosphorylation, FCoR modulates Foxo's acetylation known to control Foxo's biological activity
A Proactive Complex Event Processing Method for Large-Scale Transportation Internet of Things
The Internet of Things (IoT) provides a new way to improve the transportation system. The key issue is how to process the numerous events generated by IoT. In this paper, a proactive complex event processing method is proposed for large-scale transportation IoT. Based on a multilayered adaptive dynamic Bayesian model, a Bayesian network structure learning algorithm using search-and-score is proposed to support accurate predictive analytics. A parallel Markov decision processes model is designed to support proactive event processing. State partitioning and mean field based approximation are used to support large-scale application. The experimental evaluations show that this method can support proactive complex event processing well in large-scale transportation Internet of Things
The FoxO transcription factors and metabolic regulation
AbstractForkhead transcription factors FoxOs are conserved beyond species and regulated by insulin signaling pathway. FoxOs have diverse functions on differentiation, proliferation and cell survival. In calorie restriction (CR) or starvation, FoxOs are in nucleus, active transcriptionally, and increase hepatic glucose production, decrease insulin secretion, increase food intake and cause degradation of skeletal muscle for supplying substrates for glucose production. However, even in insulin resistance due to excessive calorie intake, FoxOs are active and causes type 2 diabetes and hyperlipidemia. The understanding of molecular mechanism how FoxOs affect glucose or lipid metabolism will shed light on the novel therapy of type 2 diabetes and the metabolic syndrome
The LXXLL motif of murine forkhead transcription factor FoxO1 mediates Sirt1-dependent transcriptional activity
The forkhead transcription factor FoxO1 has been identified as a negative regulator of insulin/IGF-1 signaling. Its function is inhibited by phosphorylation and nuclear exclusion through a PI3K-dependent pathway. However, the structure/function relationship of FoxO1 has not been elucidated completely. In this study, we carried out mutation analysis of the FoxO1 coactivator–interacting LXXLL motif (amino acids 459–463). Expression of a 3A/LXXAA mutant, in which 3 Akt phosphorylation sites (T24, S253, and S316) and 2 leucine residues in the LXXLL motif (L462 and L463) were replaced by alanine, decreased both Igfbp-1 and G6Pase promoter activity and endogenous Igfbp-1 and G6Pase gene expression in simian virus 40–transformed (SV40-transformed) hepatocytes. Importantly, mutagenesis of the LXXLL motif eliminated FoxO1 interaction with the nicotinamide adenine dinucleotide–dependent (NAD-dependent) deacetylase sirtuin 1 (Sirt1), sustained the acetylated state of FoxO1, and made FoxO1 nicotinamide and resveratrol insensitive, supporting a role for this motif in Sirt1 binding. Furthermore, intravenous administration of adenovirus encoding 3A/LXXAA FoxO1 into Lepr(db/db) mice decreased fasting blood glucose levels and improved glucose tolerance and was accompanied by reduced G6Pase and Igfbp-1 gene expression and increased hepatic glycogen content. In conclusion, the LXXLL motif of FoxO1 may have an important role for its transcriptional activity and Sirt1 binding and should be a target site for regulation of gene expression of FoxO1 target genes and glucose metabolism in vivo
Alkali-Cation-Enhanced Benzylammonium Passivation for Efficient and Stable Perovskite Solar Cells Fabricated Through Sequential Deposition
Two-step sequential deposition has been shown as an effective method to improve the quality of perovskite films and performance of perovskite solar cells (PSCs). In this work, we have developed a two-step sequential deposition method, incorporating an alkali cation (e.g., Cs+) and a benzylammonium (BA+) cation in formamidinium (FA+)-based perovskite thin films for highly efficient and stable PSCs. By combining experimental characterizations and theoretical calculations, we demonstrate that not only the co-incorporation of alkali cations and BA+ significantly improves crystallinity and orientational growth of perovskite films, but also Cs+ enhances passivation effect of BA+ ions on perovskite surface via enhanced NH…I hydrogen bonding. In particular, inclusion of Cs+ in BA+-passivated perovskites promotes the preferred orientation of defect-free (1 0 0) facets. As a result, we observed remarkable improvements in both open-circuit voltage and fill factor of formamidinium-benzylammonium-cesium (FABACs)-based PSCs, achieving a champion efficiency of 22.5%. More importantly, the FABACs perovskite films demonstrated superior resistance to humidity and photo-thermal stress, and the perovskite-based devices (without encapsulation) retained over 95% of the initial efficiency after exposure to air for 2 months. Manipulating perovskite composition by combining small alkali and large organic cations in two-step sequential deposition provides a new path to highly efficient and stable perovskite devices