66 research outputs found

    GDNF stimulates the proliferation of cultured mouse immature Sertoli cells via its receptor subunit NCAM and ERK1/2 signaling pathway

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The proliferation and final density of Sertoli cells in the testis are regulated by hormones and local factors. Glial cell line-derived neurotrophic factor (GDNF), a distantly related member of the transforming growth factor-β superfamily, and its receptor subunits GDNF family receptor alpha 1 (GFRα1), RET tyrosine kinase, and neural cell adhesion molecule (NCAM) have been reported to be expressed in the testis and involved in the regulation of proliferation of immature Sertoli cells (ISCs). However, the expression patterns of these receptor subunits and the downstream signaling pathways have not been addressed in ISCs.</p> <p>Results</p> <p>In the present study, we have reported that the proliferation of cultured ISCs was significantly enhanced by GDNF. The receptor subunits GFRα1 and NCAM but not RET were expressed in ISCs, and the stimulatory effect of GDNF on the proliferation of ISCs was significantly reduced by anti-NCAM antibody blocking or siRNA that specifically targets NCAM mRNA. Additionally, the ERK1/2 inhibitor, PD98059, completely abolished the mitogenic effect of GDNF on ISCs.</p> <p>Conclusions</p> <p>GDNF stimulates the proliferation of ISCs via its receptor subunit NCAM and the consequent activation of the ERK1/2 signaling pathway.</p

    Genomic value prediction for quantitative traits under the epistatic model

    Get PDF
    Abstract Background Most quantitative traits are controlled by multiple quantitative trait loci (QTL). The contribution of each locus may be negligible but the collective contribution of all loci is usually significant. Genome selection that uses markers of the entire genome to predict the genomic values of individual plants or animals can be more efficient than selection on phenotypic values and pedigree information alone for genetic improvement. When a quantitative trait is contributed by epistatic effects, using all markers (main effects) and marker pairs (epistatic effects) to predict the genomic values of plants can achieve the maximum efficiency for genetic improvement. Results In this study, we created 126 recombinant inbred lines of soybean and genotyped 80 makers across the genome. We applied the genome selection technique to predict the genomic value of somatic embryo number (a quantitative trait) for each line. Cross validation analysis showed that the squared correlation coefficient between the observed and predicted embryo numbers was 0.33 when only main (additive) effects were used for prediction. When the interaction (epistatic) effects were also included in the model, the squared correlation coefficient reached 0.78. Conclusions This study provided an excellent example for the application of genome selection to plant breeding

    This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. IEEE/ACM TRANSACTIONS ON NETWORKING 1 Design, Realization, and Evaluation of DozyAP for Power-Efficient Wi-Fi

    Get PDF
    Abstract—Wi-Fi tethering (i.e., sharing the Internet connection of a mobile phone via its Wi-Fi interface) is a useful functionality and is widely supported on commercial smartphones. Yet, existing Wi-Fi tethering schemes consume excessive power: They keep the Wi-Fi interface in a high power state regardless if there is ongoing traffic or not. In this paper, we propose DozyAP to improve the power efficiency of Wi-Fi tethering. Based on measurements in typical applications, we identify many opportunities that a tethering phone could sleep to save power. We design a simple yet reliable sleep protocol to coordinate the sleep schedule of the tethering phone with its clients without requiring tight time synchronization. Furthermore, we develop a two-stage, sleep interval adaptation algorithm to automatically adapt the sleep intervals to ongoing traffic patterns of various applications. DozyAP does not require any changes to the 802.11 protocol and is incrementally deployable through software updates. We have implemented DozyAP on commercial smartphones. Experimental results show that, while retaining comparable user experiences, our implementation can allow the Wi-Fi interface to sleep for up to 88 % of the total time in several different applications and reduce the system power consumption by up to 33 % under the restricted programmability of current Wi-Fi hardware. Index Terms—802.11, mobile hotspot, power-efficient, software access point, Wi-Fi tethering

    GmGBP1, a homolog of human ski interacting protein in soybean, regulates flowering and stress tolerance in Arabidopsis

    Get PDF
    BACKGROUND: SKIP is a transcription cofactor in many eukaryotes. It can regulate plant stress tolerance in rice and Arabidopsis. But the homolog of SKIP protein in soybean has been not reported up to now. RESULTS: In this study, the expression patterns of soybean GAMYB binding protein gene (GmGBP1) encoding a homolog of SKIP protein were analyzed in soybean under abiotic stresses and different day lengths. The expression of GmGBP1 was induced by polyethyleneglycol 6000, NaCl, gibberellin, abscisic acid and heat stress. GmGBP1 had transcriptional activity in C-terminal. GmGBP1 could interact with R2R3 domain of GmGAMYB1 in SKIP domain to take part in gibberellin flowering pathway. In long-day (16 h-light) condition, transgenic Arabidopsis with the ectopic overexpression of GmGBP1 exhibited earlier flowering and less number of rosette leaves; Suppression of AtSKIP in Arabidopsis resulted in growth arrest, flowering delay and down-regulation of many flowering-related genes (CONSTANS, FLOWERING LOCUS T, LEAFY); Arabidopsis myb33 mutant plants with ectopic overexpression of GmGBP1 showed the same flowering phenotype with wild type. In short-day (8 h-light) condition, transgenic Arabidopsis plants with GmGBP1 flowered later and showed a higher level of FLOWERING LOCUS C compared with wild type. When treated with abiotic stresses, transgenic Arabidopsis with the ectopic overexpression of GmGBP1 enhanced the tolerances to heat and drought stresses but reduced the tolerance to high salinity, and affected the expressions of several stress-related genes. CONCLUSIONS: In Arabidopsis, GmGBP1 might positively regulate the flowering time by affecting CONSTANS, FLOWERING LOCUS T, LEAFY and GAMYB directly or indirectly in photoperiodic and gibberellin pathways in LDs, but GmGBP1 might represse flowering by affecting FLOWERING LOCUS C and SHORT VEGETATIVE PHASE in autonomous pathway in SDs. GmGBP1 might regulate the activity of ROS-eliminating to improve the resistance to heat and drought but reduce the high-salinity tolerance

    Performance Analysis of High-Performance Concrete Materials in Civil Construction

    No full text
    This paper develops the mechanical and durable samples of C50 high-performance concrete, studies the mechanical properties, crack resistance, sulfate attack resistance, frost resistance, and impermeability of concrete with different mineral admixtures of mineral powder and fly ash, and obtains the best mineral admixture of mineral powder and fly ash to improve the performance of high-performance concrete. The results show that the doping effect is the best when the ratio of prepared mineral powder to fly ash is 3:2. With the increase in the mineral powder–fly ash admixture, the slump and expansion of high-performance concrete decrease rapidly at first and then slowly. In total, 60% doping is the turning point; the compressive and flexural strengths of concrete decreased slowly at first and then rapidly. Taking 30% of the admixture as the turning point, 35% of the mineral powder fly ash is generally selected. By mixing and adding a certain proportion of fly ash and mineral powder admixtures, the crack resistance of concrete is enhanced, and the shrinkage and cracking are reduced. The corrosion resistance coefficient will exceed 88%, the relative dynamic elastic modulus will exceed 95%, and the impermeability grade will reach P17. The durability of concrete can be improved by adding mineral admixtures

    Evaluation of Sustainable Potential Bearing Capacity of Tourism Environment Under Uncertainty: A Multiphase Intuitionistic Fuzzy EDAS Technique Based on Hamming Distance and Logarithmic Distance Measures

    No full text
    The proposal of the &#x201C;dual carbon&#x201D; goal is a deep reflection of the inherent requirements for achieving sustainable development, and has become an important constraint and policy direction for the development of all industries and sectors during the 14th Five Year Plan period and even longer. Tourism destinations are important spatial carriers for the tourism industry to achieve the &#x201C;dual carbon&#x201D; goals, and the tourism environment is the foundation for the sustainable development of tourism activities and an important prerequisite for the sustainable development of tourism destinations. Therefore, in the context of &#x201C;dual carbon&#x201D;, evaluating the current status and future development potential of sustainable carrying capacity of destination tourism environment is of great practical significance for achieving the &#x201C;dual carbon&#x201D; goal. The sustainable potential bearing capacity evaluation of tourism environment is a multiple-attribute group decision-making (MAGDM) problem. Recently, the Evaluation based on Distance from Average Solution (EDAS) technique has been employed to manage MAGDM issues. The intuitionistic fuzzy sets (IFSs) are utilized as a tool for portraying uncertain information during the sustainable potential bearing capacity evaluation of tourism environment. In this paper, the intuitionistic fuzzy number EDAS (IFN-EDAS) technique is cultivated to manage the MAGDM based on Hamming distance and Logarithmic distance under IFSs. Finally, a numerical study for sustainable potential bearing capacity evaluation of tourism environment is supplied to validate the proposed technique. The main contributions of this paper are outlined: (1) the EDAS technique has been extended to IFSs based on Hamming distance and Logarithmic distance; (2) the CRITIC technique is utilized to derive weight based on Hamming distance and Logarithmic distance under IFSs. (3) the IFN-EDAS technique based on Hamming distance and Logarithmic distance is founded to manage the MAGDM based on the Hamming distance and Logarithmic distance under IFSs; (4) a numerical study for sustainable potential bearing capacity evaluation of tourism environment and some comparative analysis is supplied to validate the proposed technique

    NiCo2S4 Nanocrystals on Nitrogen-Doped Carbon Nanotubes as High-Performance Anode for Lithium-Ion Batteries

    No full text
    Abstract In recent years, the development of lithium-ion batteries (LIBs) with high energy density has become one of the important research directions to fulfill the needs of electric vehicles and smart grid technologies. Nowadays, traditional LIBs have reached their limits in terms of capacity, cycle life, and stability, necessitating their further improvement and development of alternative materials with remarkably enhanced properties. A nitrogen-containing carbon nanotube (N-CNT) host for bimetallic sulfide (NiCo2S4) is proposed in this study as an anode with attractive electrochemical performance for LIBs. The prepared NiCo2S4/N-CNT nanocomposite exhibited improved cycling stability, rate performance, and an excellent reversible capacity of 623.0 mAh g–1 after 100 cycles at 0.1 A g–1 and maintained a high capacity and cycling stability at 0.5 A g–1. The excellent electrochemical performance of the composite can be attributed to the unique porous structure, which can effectively enhance the diffusivity of Li ions while mitigating the volume expansion during the charge–discharge processes

    Local Error Estimate of an L1-Finite Difference Scheme for the Multiterm Two-Dimensional Time-Fractional Reaction–Diffusion Equation with Robin Boundary Conditions

    No full text
    In this paper, the numerical method for a multiterm time-fractional reaction–diffusion equation with classical Robin boundary conditions is considered. The full discrete scheme is constructed with the L1-finite difference method, which entails using the L1 scheme on graded meshes for the temporal discretisation of each Caputo fractional derivative and using the finite difference method on uniform meshes for spatial discretisation. By dealing with the discretisation of Robin boundary conditions carefully, sharp error analysis at each time level is proven. Additionally, numerical results that can confirm the sharpness of the error estimates are presented

    THREE-DIMENSIONALLY ORDERED MACROPOROUS ZNO FRAMEWORK AS DUAL-FUNCTIONAL SULFUR HOST FOR HIGH-EFFICIENCY LITHIUM-SULFUR BATTERIES

    No full text
    A three-dimensionally ordered macroporous ZnO (3DOM ZnO) framework was synthesized by a template method to serve as a sulfur host for lithium–sulfur batteries. The unique 3DOM structure along with an increased active surface area promotes faster and better electrolyte penetration accelerating ion/mass transfer. Moreover, ZnO as a polar metal oxide has a strong adsorption capacity for polysulfides, which makes the 3DOM ZnO framework an ideal immobilization agent and catalyst to inhibit the polysulfides shuttle effect and promote the redox reactions kinetics. As a result of the stated advantages, the S/3DOM ZnO composite delivered a high initial capacity of 1110 mAh g−1 and maintained a capacity of 991 mAh g−1 after 100 cycles at 0.2 C as a cathode in a lithium–sulfur battery. Even at a high C-rate of 3 C, the S/3DOM ZnO composite still provided a high capacity of 651 mAh g−1, as well as a high areal capacity (4.47 mAh cm−2) under high loading (5 mg cm−2)
    corecore