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Abstract—Wi-Fi tethering (i.e., sharing the Internet connection
of a mobile phone via its Wi-Fi interface) is a useful functionality
and is widely supported on commercial smartphones. Yet, existing
Wi-Fi tethering schemes consume excessive power: They keep the
Wi-Fi interface in a high power state regardless if there is ongoing
traffic or not. In this paper, we propose DozyAP to improve the
power efficiency of Wi-Fi tethering. Based on measurements in
typical applications, we identify many opportunities that a teth-
ering phone could sleep to save power. We design a simple yet reli-
able sleep protocol to coordinate the sleep schedule of the tethering
phone with its clients without requiring tight time synchroniza-
tion. Furthermore, we develop a two-stage, sleep interval adapta-
tion algorithm to automatically adapt the sleep intervals to ongoing
traffic patterns of various applications. DozyAP does not require
any changes to the 802.11 protocol and is incrementally deploy-
able through software updates. We have implemented DozyAP on
commercial smartphones. Experimental results show that, while
retaining comparable user experiences, our implementation can
allow the Wi-Fi interface to sleep for up to 88% of the total time
in several different applications and reduce the system power con-
sumption by up to 33% under the restricted programmability of
current Wi-Fi hardware.

Index Terms—802.11, mobile hotspot, power-efficient, software
access point, Wi-Fi tethering.

I. INTRODUCTION

W I-FI tethering, also known as a “mobile hotspot,” means
sharing the Internet connection (e.g., a 3G connection)

of an Internet-capable mobile phone with other devices over
Wi-Fi. As shown in Fig. 1, a Wi-Fi tethering mobile phone acts
as a mobile software access point (softAP). Other devices such
as laptops, tablet PCs, and other mobile phones can connect to
the mobile softAP through their Wi-Fi interfaces. The mobile
softAP routes the data packets between its 3G interface and its
Wi-Fi interface. Consequently, all the devices connected to the
mobile softAP are able to access the Internet.
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Fig. 1. Illustration of a typical setting of Wi-Fi tethering.

Wi-Fi tethering is highly desired. Main-streaming smart-
phones including iPhones (iOS 4.3+), Android phones (An-
droid 2.2+), and Windows phones (Windows Phone 7.5+) all
provide built-in support of Wi-Fi tethering. There were also
many third-partyWi-Fi tethering tools with customized features
in App markets. We believe there are two main reasons why
Wi-Fi tethering is so desirable. First, cellular data networks
provide ubiquitous Internet access over the world but the cov-
erage of Wi-Fi networks is much limited. Second, it is common
for people to own multiple mobile devices, but likely they do
not have a dedicated cellular data plan for every device. As a
result, it demands to share a data plan among multiple devices,
e.g., sharing the 3G connection of an iPhone with a Wi-Fi only
iPad. Wi-Fi tethering provides a convenient way to do this.
However, Wi-Fi tethering significantly burdens a smart-

phone’s battery. When enabling tethering, the Wi-Fi interface
always stays in high power state and never sleeps even when
there is no data traffic going on. This increases the power
consumption by one order of magnitude and reduces the battery
life from days to hours (more details in Section II-A). To save
power, a Windows phone automatically turns off Wi-Fi teth-
ering if the network is inactive for a time threshold of several
minutes. However, this method has two drawbacks. First, the
Wi-Fi interface still operates in a high power state for the idle
intervals less than the threshold, leading to waste of energy.
Second, it harms usability. If a user does not generate any
traffic for a time period longer than the threshold (e.g., while
reading a long news article) and then starts to use the network
again (e.g., by clicking another news link), the user will have
to go back to the smartphone and manually re-enable Wi-Fi
tethering, which results in poor user experience.
The IEEE 802.11 standard defines the power saving mech-

anism for wireless stations in client mode, ad hoc mode, but
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not in AP mode. That is because traditional APs are externally
powered by cables, so that power saving is not a crucial issue
for those APs. However, old wisdom does not work for the bat-
tery-powered smartphones operating in Wi-Fi tethering. Hence,
it is time to think about how to save power for smartphones
working as softAPs.
Recently, Wi-Fi Direct specification introduces a power-

saving protocol for Wi-Fi Direct devices acting as access
points (APs). The protocol operates in the media access control
(MAC) layer and allows APs to notify clients with newly
defined messages when they are going to sleep. However,
existing 802.11 devices including most smartphones cannot
benefit from the new feature supplied by Wi-Fi Direct. Future
mobile devices may have a chipset that can support Wi-Fi
Direct. However, due to the lack of the programmability of
Wi-Fi chipsets in Wi-Fi industry, a device vendor still may find
it difficult to implement its own tethering solution independent
of the one delivered by the chipset vendor. In this paper, we
propose a new approach for device vendors and software devel-
opers to implement a power-efficient Wi-Fi tethering solution
without underlying support. To demonstrate its efficacy, we
design DozyAP, a system to reduce power consumption of
Wi-Fi tethering on smartphones while still retaining a good
user experience.
The key idea of DozyAP is to put the Wi-Fi interface of a

softAP into sleep to save power. We measured the traffic pattern
of various online applications used in Wi-Fi tethering. We find
that the Wi-Fi network is idle for a large portion of total appli-
cation time (more details in Section II-B), which means the AP
could sleep during this idle time. Furthermore, we know that the
cellular interface is typically slower than Wi-Fi interface. Thus,
the Wi-Fi interface of a softAP could sleep while waiting for
the data transmission through the cellular network. All of these
indicate there are many opportunities to reduce softAP’s power
consumption. With DozyAP, a softAP can automatically sleep
to save power when the network is idle and wake up on demand
if the network becomes active again.
Putting a softAP into sleep imposes two challenges. First,

without a careful design, it may cause packet loss. Existing
Wi-Fi clients assume that APs are always available for receiving
packets, so whenever a client receives an outgoing packet from
applications, it will immediately send the packet to its AP. How-
ever, if the AP is in the sleep mode, this packet will be lost, even
after the retries that occur at the low layers of the network stack.
Second, putting an AP to sleep will introduce increased network
latency and may impair user experience if the extra latency is
user perceivable.
DozyAP addresses the first challenge with a sleep request-re-

sponse protocol with which a softAP and its clients negotiate
and agree on a valid sleep schedule. To avoid possible packet
loss, a client will transmit packets only when the softAP is
active, and buffer outgoing packets otherwise. To address the
second challenge, we design an adaptive sleep scheme and limit
the maximum sleep duration. Consequently, DozyAP is able to
reduce power consumption of Wi-Fi tethering with negligible
impact on the network performance. DozyAP does not require
any changes to the 802.11 protocol and is incrementally deploy-
able via software updates to mobile devices.
We have implemented the DozyAP system on existing

commercial smartphones and evaluated its performance using

various applications and the traces from real users. Evaluation
results show that DozyAP can put the Wi-Fi interface of a
softAP to sleep for up to 88% of the total time in several
different applications. Due to the restricted programmability
of current Wi-Fi hardware on smartphones, forcing a softAP
to sleep or wake up consumes considerable overhead. Thus,
DozyAP only saves power by up to 33% while increasing
network latency by less than 5.1%.
It is noticed that tethering can be also enabled by USB,

Bluetooth, and Wi-Fi in ad hoc mode. However, USB tethering
has drawbacks that can only support one client. Also, con-
necting phones to devices such as tablets is not easy due to the
constrained interface and complicated system configuration.
Bluetooth suffers high energy consumption per bit transmission
cost and low bandwidth [1], thus consuming more energy than
Wi-Fi. Ad hocmode of Wi-Fi is less used than the infrastructure
mode in practice. The OS on many mobile devices including
Windows phones, Android phones, and iPhones hides such
a mode, preventing a device from connecting to an ad hoc
network [2]. Due to the above reasons, those tethering methods
are out of scope of this paper.
To the best of our knowledge, we are the first to study the

power efficiency of a softAP in Wi-Fi tethering. The main con-
tributions of this paper are the following.
• We study the characteristics of existingWi-Fi tethering and
present our findings. We show that current Wi-Fi tethering
is power-hungry, wasting energy unnecessarily. We ana-
lyze the traffic patterns of various applications and identify
many opportunities to optimize the power consumption of
Wi-Fi tethering.

• We propose DozyAP to improve power efficiency ofWi-Fi
tethering. We design a simple yet reliable sleep protocol to
schedule a mobile softAP to sleep without requiring tight
time synchronization between the softAP and its clients.
We develop a two-stage adaptive sleep algorithm to allow
a mobile softAP to automatically adapt to the traffic load
for the best sleep schedule.

• We implement DozyAP system on commercially available
off-the-shelf (COTS) smartphones and evaluate its perfor-
mance through experiments with real applications and sim-
ulations based on real user traces. Evaluation results show
that DozyAP is able to significantly reduce power con-
sumption of Wi-Fi tethering and retain comparable user
experience at the same time.

The rest of the paper is organized as follows. In Section II,
we report our findings on existing Wi-Fi tethering, with focus
on the power consumption and the traffic patterns of various
applications. Based on the findings, in Section III we design
DozyAP that can schedule a mobile softAP to sleep and
present the design details. We describe our implementation in
Section IV and evaluate it in Section V. We discuss limitations
of DozyAP and future work in Section VI, survey the related
work in Section VII, and conclude in Section VIII.

II. UNDERSTANDING WI-FI TETHERING

In this section, we report our findings on the characteristics of
Wi-Fi tethering through real measurements on existing commer-
cial smartphones. We focus on two characteristics: the power
consumption and the traffic pattern of various online applica-
tions used in Wi-Fi tethering. Furthermore, we provide some
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Fig. 2. Measured power consumption of Wi-Fi tethering on Nexus One and
HTC HD7 without background traffic.

background on Wi-Fi power management to set up the context
of our DozyAP design.

A. Power Consumption

We first measured the power consumption of existing com-
mercial smartphones regarding theWi-Fi tethering.We imposed
no traffic but simply turned on/off the Wi-Fi tethering, i.e., the
Wi-Fi interface and the 3G interface were kept on but idle. We
used a Nexus One phone (Android 2.3.6), an HTC HD7 Win-
dows Phone (Windows Phone 7.5), and an iPhone 4 (iOS 4.3.5)
for experiments. For the Nexus One and the HTCHD7, wemea-
sured the power consumption of the whole system using a Mon-
soon Power Monitor [3]. However, it is impossible to use the
Monsoon Power Monitor to measure the power consumption of
the iPhone without damaging the phone. Instead, we usedMyWi
5.0 [4], a very popular third-party Wi-Fi tethering tool on iOS
that is able to tell the draining current of the battery, to measure
the power consumption of the iPhone 4 when Wi-Fi tethering is
enabled. In all the experiments, the display was turned off.
With Wi-Fi tethering disabled, the power consumption of all

smartphones was pretty low because the Wi-Fi and 3G inter-
faces were in sleep for most of the time. The average power
consumption was only 20 mW for the Nexus One and 30 mW
for the HTC HD7, respectively. For the iPhone 4, MyWi read a
draining current of 6 mA, equivalently a power consumption of
22 mW.
With Wi-Fi tethering enabled, the power consumption of the

smartphones increased significantly. Fig. 2 shows the results of
the Nexus One and the HTC HD7 smartphones. We can see that
both smartphones operated in a high power state constantly even
though there was no traffic at all. There are periodic spikes in
the plots caused by periodicWi-Fi beacon transmissions. On av-
erage, the power consumption was 270 mW for the Nexus One
and 302 mW for the HTC HD7. For the iPhone 4, MyWi read a
draining current of 90mA, equivalently a power consumption of
333 mW. While software reading may not be as accurate as the
Monsoon Power Monitor, the result still clearly indicates that
Wi-Fi tethering on the iPhone 4 has similar power consumption
as on the Nexus One and the HTC HD7. Also, we tested phones
with the latest OS versions such as Android v4.x. The power
consumption was similar.
The above results demonstrate that existing Wi-Fi tethering

schemes on all the three mobile platforms are power-hungry.
They consume an order of magnitude more power than neces-
sary when there is no ongoing traffic, i.e., in idle network state.

In Section II-B, we will show that such idle states occur fre-
quently in various typical Internet access scenarios.
Intuitively, the Wi-Fi interface should be put to sleep when

theWi-Fi network is idle. As the battery is a very scarce resource
on smartphones, this calls for a power-efficient Wi-Fi tethering
solution and motivates us to conduct the work in this paper.

B. Traffic Pattern

Next, we study how frequently the Wi-Fi network is actually
in an idle state and how long the idle state typically lasts. We en-
abled Wi-Fi tethering on a Nexus One smartphone with a China
Unicom 3G connection. A Wi-Fi client is connected to such a
mobile softAP. On the client side, we launched various applica-
tions to access the Internet, and they are used normally. In the
meantime, we used a Lenovo T61 laptop running Linux 2.6.32
as a Wi-Fi sniffer to capture all the packets exchanged between
the client and the softAP. We studied two different clients: a
Nexus One smartphone and a Wi-Fi version iPad 2. Seven ap-
plications were measured including news reading, online book
reading, video streaming, search, Map, e-mail, and RSS.
Note that some Web sites detect the type of client devices

and return different content for different device types. For ex-
ample, when the Nexus One smartphone is used, Baidu News
automatically redirects to its mobile version that returns less
complex Web pages than the normal version. Similarly, Youku
streams low-bit-rate video clips to the Nexus One smartphone,
but high-bit-rate ones of the same videos to the iPad 2. As a re-
sult, the same application may behave differently on different
devices. For each application, we study the traffic patterns by
analyzing the packet interarrival time of all the captured packets.
Fig. 3 shows the results of the Nexus One. Due to the space

limitation, we omit the iPad 2 case, which also has similar re-
sults. We first study the distribution of packet interarrival in-
tervals in the total application time, which indicates the period
from the first packet to the last one. The left figure in Fig. 3
shows the cumulative distribution function (CDF) for all the
applications, where the -axis depicts the percentage of packets
with interpacket intervals less than or equal to a specific value in
the -axis to the total application time. To make the curves easy
to read, we only show the data for the time intervals less than
1 s. We can see that the intervals under 200 ms only take less
than 30% of the total application time for all the applications
on the Nexus One. For the iPad 2, the corresponding number
is 35%. For some applications, these intervals consume as low
as 20% or even less than 10% on the Nexus One or the iPad 2.
If we consider the network “idle” during the packet interarrival
intervals larger than 200 ms, then we can say that the Wi-Fi net-
work was idle for 70%–90% of the total application time. This
shows that these applications only spent a small portion of time
for the Internet access and their network traffic is very sparse
and bursty.
There are two main reasons for the above findings. First,

all the applications consist of two phases: a content fetching
phase and a content consuming phase. Once users download
some content from a remote server (e.g., a Web server), they
need to spend time to consume the content (e.g., reading the
text). The content consuming time may vary from seconds
to tens of seconds to even minutes. During such a time, the
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Fig. 3. Traffic pattern of seven applications. From left to right: CDF of packet interarrival intervals in total application time; CDF of packet interarrival intervals
in total packets; probability of sleeping for 100 ms after an idle threshold.

network is mostly idle. In the e-mail case, replying to e-mails
and composing new ones also result in significant network
idle time. Secondly, the bandwidth of 3G is much lower than
that of Wi-Fi. According to 3G Test [5], 3G typically offers
500 kb/s–1 Mb/s downlink throughput for US carriers, but the
Wi-Fi offers much higher data rates (54 Mb/s for 802.11a/g
and 300 Mb/s for 802.11n). Furthermore, 3G has much higher
round-trip times (RTTs), ranging from 200 to 500 ms [5], than
that of Wi-Fi. Consequently, the Wi-Fi interface of a softAP in
Wi-Fi tethering often has to wait for data to be received from or
transmitted over 3G. Such a waiting period will put the Wi-Fi
interface in an “idle” state.
While the results are somehow as expected for those inter-

active applications, we are surprised to see that similar pat-
terns were observed in the video streaming case. Even for the
iPad 2 on which a high-bit-rate video clip was continuously
played back, the packet interarrival intervals larger than 200 ms
took more than 60% of the total streaming time. After carefully
checking the captured trace, we found that it used a large video
buffer when streaming video clips. It aggressively downloaded
video content until the video buffer was full. Then, it stopped
video downloading. The downloaded bits were constantly con-
sumed and drained from the buffer. Once the buffer level be-
came lower than a threshold, the aggressive downloading was
resumed again.
The large percentage of the Wi-Fi idle time in these applica-

tions demonstrates that there are many opportunities to reduce
the power consumption of Wi-Fi tethering. During the large
network idle intervals, the Wi-Fi interface of a mobile softAP
should sleep to save power. More specifically, there are two
kinds of network idle intervals that we exploit in this paper.
The first one is the long network idle intervals resulting from
the user content consuming behavior. The second one is the rel-
atively shorter network idle intervals that occur during the con-
tent downloading. The latter case is mainly caused by the RTTs
of 3G: After a client sends a request packet to a remote server,
it has to wait for at least an RTT of 3G to get the first response
packet from the server. For example, to access a Web server,
we can typically see two such network idle intervals: one for
the DNS name lookup for the server and the other for making a
TCP connection to the server.
We further study how putting a softAP to sleep can affect the

network performance. The middle figure in Fig. 3 shows the

CDF of packet interarrival interval in total packets, where the
-axis depicts the percentage of the packets whose interpacket
interval is less than or equal to a specific value in the -axis to
the total number of packets. We can see that the interpacket in-
tervals under 150 ms cover more than 80% of all the packets for
all the applications. For some applications, the number is as high
as 90% or even 95%. This means that if we use an idle threshold
of 150 ms to decide whether to put the softAP to sleep or not,
most of the packets will not be affected. The right figure in Fig. 3
further shows the probability that the softAP could successfully
sleep for extra 100 ms after waiting for different idle thresholds.
We found that 150 ms was a good threshold to optimize the en-
ergy saving and minimize the incurred network latency in terms
of sleeping probability and the number of involved packets.
All the above findings demonstrate that a mobile softAP

could and should sleep to save power in Wi-Fi tethering, which
provides the foundation for our DozyAP design.

C. Background: Wi-Fi Power Saving

The IEEE 802.11 standard defines a power saving
mode (PSM) to save power for Wi-Fi clients [6]. In PSM,
the Wi-Fi interface of a client always stays in a very low power
state to save power and cannot receive or transmit any data.
If an AP needs to send some packets to a client in PSM, the
AP will first buffer the packet and set the Traffic Indication
Map (TIM) in its beacons, which are broadcast typically every
100 ms. A PSM client periodically (i.e., every a certain number
of beacon intervals) wakes up to listen to beacons. If the client
detects a TIM for itself, it sends an individual PS-Poll frame to
notify the AP of sending a buffered packet. Otherwise, it goes
to sleep immediately. When the AP transmits a buffered packet
to the client, an MORE flag in the header of the data frame is
set if the AP has more packets for the client. This allows the
client to decide when to stop sending PS-Poll frames.
On the Nexus One, the above static PSM scheme is called

“PM_MAX.” PM_MAX allows a client to sleep as long as
the AP does not have any packet for it. However, this leads
to long network latency and hence low network efficiency.
Therefore, on the Nexus One, another power saving scheme
called “PM_FAST” is used. In PM_FAST, a client stays in
active unless its Wi-Fi interface is idle for a threshold of 200
ms. Then, it sends a Null-Data frame with power management
flag set to 1 to tell its AP that it will sleep soon. If such a
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Fig. 4. Interaction of a softAP and a client using the sleep request-response
protocol.

frame is acknowledged, the client is able to go to sleep since
all packets destined for it will be buffered at AP. Otherwise,
the client cannot go to sleep. Once the client detects a TIM for
itself from beacons, it notifies the AP that it is active and ready
to receive packets by a single Null-Data frame with power
management flag set to 0. Many other Wi-Fi devices today
also implement a similar scheme known as adaptive PSM [7].
PM_FAST is designed for fast system response, and PM_MAX
is more suitable for background services. By default, Nexus
One smartphones use PM_FAST if the screen is on, and switch
to PM_MAX if the screen is turned off.

III. DozyAP DESIGN

Guided by the findings in Section II, we design the DozyAP
system that aims to reduce the power consumption of Wi-Fi
tethering by putting the Wi-Fi interface of a mobile softAP into
sleepmode whenever possible.We present the detail of DozyAP
and the rationale of the design decisions. We start with a single
client and describe the extension to support multiple clients later
on.

A. Scheduling a SoftAP to Sleep

We design a simple sleep request-response protocol to enable
a mobile softAP to safely sleep in Wi-Fi tethering according to
its own best schedule. While the softAP can sleep at will, it can
only do so when the client agrees, to avoid possible packet loss.
Therefore, before entering sleep mode, a softAP sends a sleep
request to its client. If the client sends back a sleep response to
accept the sleep request, the softAP then enters the sleep mode.
Otherwise, it will continue to stay in the active state. Fig. 4
shows a typical interaction procedure between a softAP and a
client. At time , the softAP decides to sleep and enters sleep
mode at time after receiving the client’s agreement. When the
sleep times out at time t3, the softAP wakes up and continues to
communicate with the client.
Packet Format: Both the sleep request and the sleep response

are transmitted as a normal Wi-Fi unicast data packet. This de-
sign does not require any modification on existing Wi-Fi stan-
dard and is easy to implement. Fig. 5 shows the packet format.
The sleep protocol is implemented directly on top of the un-
derlying link layer without TCP/IP headers in the middle to re-
duce the overhead. The sleep protocol packets have three fields.
The “Type” field indicates the packet type: “0 1” means sleep
request, and “0 2” means sleep response. The “Sequence

Fig. 5. Packet format of the sleep protocol.

Fig. 6. State machine for a softAP (top) and a client (bottom).

Number” field is a unique ID to identify a sleep request-re-
sponse pair. It starts from zero and increases by one for every
new sleep request. The “TimeDuration” field specifies how long
(in milliseconds) the softAP requests to sleep. All the sequence
numbers and time durations are decided by the softAP. When
the client accepts a sleep request, it simply copies the sequence
number and time duration from the sleep request packet into
its sleep response packet. Sleep response packets are used only
for accepting a sleep request. If the client does not agree the
softAP to sleep, it simply chooses not to send out the sleep re-
sponse. There is only one case that the client will decline the
sleep request of the softAP: it has more data packets to transmit.
In that case, the client will send a data packet, instead of the
sleep response packet, to the softAP. The softAP then learns that
the client has declined the sleep request and thus stays active.
This design reduces the overhead of the sleep protocol because
a sleep response packet is transmitted only when it is necessary.
State Machine: Fig. 6 shows the state machine of a softAP

and a client. A softAP has three states: Normal, Pre-sleep, and
Sleep. In the Normal state, the softAP is active and can transmit
and receive packets normally. When the Wi-Fi interface of
the softAP is idle for a time period larger than a predefined
threshold, the softAP sends a sleep request packet to its client
with a sequence number seq and a time duration dur. Then,
it enters the Pre-sleep state and waits for a sleep response. If
it receives the right sleep response with the same sequence
number seq and time duration dur, it will put its Wi-Fi interface
into sleep mode and enter the Sleep state; if it receives any
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Fig. 7. Abnormal cases. (a) Sleep request is lost. (b) Sleep response is lost. (c) Sleep response is delayed. (d) Data packet is delayed.

packet other than the expected sleep response, it will go back to
the Normal state and invalidate the sleep request. In the Sleep
state, the Wi-Fi interface of the softAP is turned to sleep to
save power. Thus, the softAP cannot receive any packets over
Wi-Fi. If it receives any data from its 3G interface, it will buffer
them during the whole period of Sleep state. When the sleep
timeout expires and some data are buffered, the softAP wakes
up its Wi-Fi interface, switches to Normal state, and transmits
the buffered data to the client. Otherwise, it moves back to
the Pre-sleep state, sends out another sleep request with a new
sequence number new_seq and a new time duration new_dur,
and waits for the next sleep response.
The state machine of a client has only two states: Normal and

Block. In the Normal state, the client communicates with the
softAP as normal. It may use any Wi-Fi power saving schemes
such as PM_MAX, PM_FAST, or none. If the client receives a
sleep request from the softAP and agrees, i.e., it does not have
any packets to transmit, it tentatively sets itsWi-Fi power saving
scheme to PM_MAX, sends back a sleep response to the softAP,
and enters the Block state. Note that by switching to PM_MAX,
the firmware automatically sends a Null-Data frame to tell the
softAP that the client is going to sleep. Done this way, the client
can go to sleep as quickly as possible (i.e., immediately after
the sleep response). In contrast, if a client that uses PM_FAST
does not change to PM_MAXbefore sending the sleep response,
it will wait for a 200-ms idle period to send out a Null-Data
frame. However, as the softAP has already entered the Sleep
state once receiving the sleep response, it cannot receive the
Null-Data frame afterwards. As a result, the Null-Data frame is
not acknowledged, and the client cannot go to sleep as supposed.
Therefore, it is essential for clients to switch to PM_MAX to
maximally save power. In the Block state, the Wi-Fi interface
of the client is in power saving mode, and the client knows that
the softAP is sleeping. Thus, it blocks all the packet transmis-
sions by buffering all the packets from applications. If the sleep
schedule times out or the client receives a data packet from the
softAP, it restores the previous power saving scheme (e.g., back
to PM_FAST) and moves back to the Normal state. At this time,
both the softAP and the client can communicate normally. Oth-
erwise, the softAP will send a new sleep request to try to sleep
again.

B. Synchronization

One advantage of the sleep request-response protocol is that it
does not require tight time synchronization between the softAP
and the client. If the softAP and the client can synchronize their

time perfectly, they can coordinate their sleep scheduling to
avoid packet loss without transmitting any extra sleep request
and response packets. However, this is hard to achieve in prac-
tice. Although very fine-grained hardware timestamps (e.g., at
microsecond granularity) exists at link layer, such timestamps
are segregated inside firmware and are not available to theWi-Fi
driver and applications. It is possible to do time synchroniza-
tion by explicitly exchanging packets with timing information
between the softAP and the client. Such time synchronization
must be done periodically due to clock drift, which increases
power consumption. Due to these considerations, we intention-
ally avoided the time synchronization approach.
Interestingly, the proposed sleep protocol can achieve loose

synchronization between a softAP and a client, with a desirable
property: The client will never conclude that the softAP is awake
while it is sleeping. Therefore, our approach will not lead to
packet loss that would arise from wrong attempts of sending
packets while the softAP is actually in sleep mode. In normal
case, this is obvious because the softAP will sleep only after
it receives a sleep response from the client. However, due to
the uncertainty and complexity of wireless communication, the
sleep protocol may not work as smoothly as expected. We an-
alyze several possible abnormal cases and their consequences,
as illustrated in Fig. 7.
Packet Loss: First, sleep request or response packets may

be lost during their transmissions. For example, a sleep request
may be lost. In this case, the softAPwill stay in active. If later on
the client or the softAP has data to transmit, they start to com-
municate as normal. Conversely, the softAP will send out a new
sleep request after the network remains idle for a period longer
than the predefined idle threshold, as shown in Fig. 7(a). The
worst effect of losing a sleep request is that the softAP would
waste some energy for staying in unnecessary active state be-
tween two successive sleep requests. Similarly, if a sleep re-
sponse is lost, the softAP also has to stay in active until the next
sleep request. However, in this case, as the client has concluded
that the softAP is in sleep, it will stay in the Block state and start
to buffer packets. Thus, it may further incur extra delay up to the
idle threshold to the client, as shown in Fig. 7(b).
Packet Out-of-Order: Second, packet transmission may be

delayed due to the hardware queuing and wireless contention.
As a result, there is a slight chance that packets may not ar-
rive at their destinations in the expected order. For example,
Fig. 7(c) shows the case that a sleep response is delayed by the
client’s hardware. The softAP receives sleep response 1 after
sleep request 2 is sent out. In this case, the softAP just ignores
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sleep response 1, but it has to stay in active between the two
sleep requests. Fig. 7(d) shows a more complex case. The client
has already passed a packet to the firmware, and the packet is
waiting for transmission in the hardware queue. At this moment,
the client receives a sleep request from the softAP. As the client
does not have more data to transmit, it replies a sleep response.
However, once the softAP receives the data packet, it resets its
idle timer, stays in active, and ignores the sleep response. Con-
sequently, the softAP and the client are out of sync: The softAP
stays in active, wasting energy, but the client assumes the softAP
is in sleep and delays its packets transmission.
Based on the above analysis, we can see that those abnormal

cases would at most cause some overhead in energy and trans-
mission latency, but they would not break the desired synchro-
nization property of our sleep protocol. A client will never try
to send packets when the softAP is actually in sleep. The softAP
and the client may run out of sync temporally, but will always
resume sync after the subsequent sync response. This demon-
strates the robustness of our sleep protocol. In addition, in the
Wi-Fi tethering, the bottleneck is usually the 3G connection as
its bandwidth is much lower than that of Wi-Fi. The necessity
airtime of Wi-Fi is usually light, and thus, the above abnormal
cases can rarely happen.
It is noticed that the sleep request-response protocol operates

above the MAC layer, thus all the MAC-layer frames such as
beacons and Null-Data cannot be seen by the protocol. That
is why DozyAP has to explicitly exchange sleep requests and
responses to negotiate a sleeping schedule. If the protocol is
applied to the MAC layer, the negotiation can be performed
through existing MAC-layer frames. For example, if a client
does not have data to transmit, it sends a null-data frames with
power management flag set to 1. Once observing that all clients
have been in sleep mode, the AP automatically turns off. Owing
to the tight time synchronization existing at MAC layer, both
AP and clients could wake up almost at the same time when the
predetermined sleep timeout or next beacon is due. Then, AP
could send buffered packets and clients could upload buffered
packets.

C. Adaptive Sleeping

Our sleep protocol allows a softAP to sleep. The next natural
question is: How long should it sleep? The simplest solution
is certainly to sleep for a fixed interval. However, it is difficult
to determine such an interval because the RTT of 3G connec-
tion varies and the packet arrival time is irregular. In our de-
sign, we come up with an adaptive sleep scheduling algorithm
to adapt to the traffic pattern and also the 3G network property.
Our adaptive sleep algorithm consists of two stages, namely a
short sleep stage and a long sleep stage, that are designed to ex-
ploit the two distinctive phases (i.e., the content downloading
phase and the content consumption phase) of interactive appli-
cations, respectively.
Sleep Algorithm: Fig. 8 shows how the two-stage adaptive

sleep algorithm works. The basic idea is to probe the optimal
sleep interval such that the softAP can wake up shortly before
a packet arrives. Starting with an initial conservative sleep in-
terval, the sleep interval is gradually increased, at a conserva-
tive pace, until a packet has arrived during the last sleeping.
Then, the initial sleep interval is updated dynamically. For sake

Fig. 8. Two-stage adaptive sleep algorithm.

of easier expression, all the successive sleep slots are collec-
tively called a sleep cycle.
More concretely, when the Wi-Fi interface remains idle for a

time period of thresh, the softAP will enter the short sleep stage.
It first sleeps for a time period of init, which equals to min ini-
tially. When the softAP wakes up, it either goes back to the AC-
TIVE mode if there are pending outgoing or incoming packets,
or continues to sleep for a fixed interval of step. Depending on
the real packet arrival pattern, the length of the sleep cycle may
become longer and longer between two subsequent wakeups.
The sleep period can be expressed as , where
is the number of continuous sleep slots after the first sleep slot
of init.
As waking the Wi-Fi hardware up introduces certain energy

overhead [8], it is desirable to reduce the number of unnecessary
wakeups. This calls for a good init value that can let the softAP
sleep as long as possible while still being able to wake up in
time, i.e., to avoid or shorten the probing process. We determine
the init value by exploiting the sleep history. We use parameters
cur and pre to track the gross length of all successful sleep slots
in the current sleep cycle and that in the previous sleep cycle,
respectively. That is, we have cur equal to
because a sleep cycle is always ended up by a false sleep slot
during which a packet has arrived and been buffered. Parameter
pre is simply a running record of the previous cur. Based on the
values of cur and pre, we adjust the value of init with a simple
algorithm INIT_UPDATE as follows: If both cur and pre are
greater than current init plus step, we increase init by step for
the next sleep cycle. If cur is less than or equal to current init
minus step, we decrease init by step. To avoid excessive latency
that may be caused by an overly greedy init value, we cap it to
the value of max. In SHORT_SLEEP stage, if the softAP has
continuously been in sleep for a time period of thresh_l, it goes
to LONG_SLEEP stage. In LONG_SLEEP stage, the softAP
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Fig. 9. Short sleep and long sleep example.

simply sleeps for a time period of long periodically until it quits
from sleep to communicate with the client.
Example: Fig. 9 illustrates the algorithm with a concrete ex-

ample. Some details such as the time for waking up the Wi-Fi
interface between continuous sleep slots are omitted for sake
of easier reading. Assuming the current value of init is 200 ms
and the value of step is 100 ms, in the first short sleep circle
(the 460-ms one), after thresh (150 ms) idle time for triggering
sleep request-response protocol, the softAP will first sleep for
200 ms, followed by two 100-ms sleep slots. Suppose the value
of init is then qualified to increase to 300 ms. In the second short
sleep circle, after 150 ms idle time, the softAP will first sleep for
300 ms followed by one more 100-ms sleep slot. In the content
consuming period, after sleeping for a time period of thresh_l,
the softAP enters the long sleep stage and periodically sleeps
for a time period of long (500 ms).
The above algorithm is specially designed for the traffic

patterns of typical applications in Wi-Fi tethering as shown in
Section II-B. The short sleep stage is designed for the softAP to
sleep between the time when the client sends out a request to a
remote server and the time when the first response packet from
the remote server is received. That duration is roughly an RTT
of the 3G connection (typically hundreds of milliseconds [5]).
The purpose of the init parameter is exactly to estimate the 3G’s
RTT in an elegant way, based on the length of last two sleep
cycles. Note that our algorithm is conservative in the sense
that it tries to reduce the energy consumption under minimal
impairment to user experience, i.e., extra latency incurred.
We decrease the value of init quickly, by considering only
the length of the current sleep cycle, but increase the value of
init slowly by considering the length of both the current and
the previous sleep cycles. In addition, we use the parameter
thresh to prevent the softAP from entering the short sleep stage
during burst data transmission period (e.g., multiple response
packets from a remote server for the same client request such
as fetching a picture. In Section IV, we describe the parameter
values used in our implementation.
In summary, our sleep algorithm automatically adapts to the

traffic pattern of applications and achieves a good balance be-
tween power saving and network performance.

D. Supporting Multiple Clients

DozyAP can support multiple clients by repeatedly applying
the sleep request-response protocol to each client. A client goes
to sleep once it agrees to the AP’s sleep request. A softAP can
sleep only if it receives the sleep responses from all the clients.
If some clients replied to a sleep response but other clients
did not, the softAP has to stay awake in this case. This design

Fig. 10. Implementation architecture of (left) the client part and (right) the
softAP part.

makes sense because some clients may have data to send and the
softAP must serve those clients. It is expected that the softAP
sleeps less and consumes more power in the multiclient case.
However, extending DozyAP to support multiple clients will
not break the synchronization property of the sleep protocol: No
client will send a packet when the softAP is in sleep. Note that
we considered the possibility of broadcasting the sleep requests
as it can obviously reduce the overhead of the sleep protocol.
However, we do not take this approach for two reasons. First,
broadcast packets are less reliable because they are transmitted
without link-layer retransmissions. Second, the clients in PSM
likely cannot receive broadcast packets, whereas the unicast
packets will be buffered in AP’s hardware transmission queue
until clients wake up from PSM. Therefore, the improvement
of using broadcast is expected to be very small in multiclient
case, and for single-client case, it is worse than using unicast.
Another minor issue with the multiclient case is the beacon.

In our design, a softAP does not send out beacons in the sleep
mode. Thus, a new client cannot join the Wi-Fi network when
the softAP is in sleep. However, the softAP sends out periodic
beacons when it is active. Even in long sleep stage, it still wakes
up periodically and can send out beacons. Consequently, a new
client is still able to find the softAP but may experience slightly
longer latency. As this only happens when a new client joins the
network, we think it is acceptable.

IV. IMPLEMENTATION

We have implemented the DozyAP system on a Nexus One
smartphone running Android 2.3.6, with a Wi-Fi chipset of
Broadcom BCM4329 802.11 a/b/g/n [9].
The overall architecture consists of two parts: the softAP part

and the client part, as shown in Fig. 10. The softAP part is di-
rectly modified from the open-source Wi-Fi driver in which we
embedded the sleep request-response protocol and the two-stage
adaptive sleep algorithm. When the softAP is in sleep state, all
the packets received from 3G interface are buffered. The client
part is implemented as a loadable module where a packet buffer
is implemented, together with a blocking controller to decide if
and when application packets must be buffered. In our proto-
type, we use a special Ethernet type of 0xfffff (a reserved
value that should not be used in products) for the packets of
the sleep request-response protocol. In real deployment, other
approaches can be used to implement the sleep protocol, e.g.,
using dedicated IP packets rather than the special Ethernet type.
We use netfilter to intercept all the outgoing packets and to de-
tect the packets of sleep requests and response. Implementing
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Fig. 11. Power consumption of switching on/off the Wi-Fi interface.

the client part as a loadable module does not require any modi-
fications to the source code of the client OS. This makes it easy
to deploy DozyAP on different types of client devices.
Putting a Mobile softAP Into Sleep: One practical difficulty

we met is how to put a mobile softAP to sleep. On smartphones
(Nexus One and other types of smartphones), mostWi-FiMAC-
layer functionalities are implemented in the firmware running
on theWi-Fi chipset, not in the CPU-hostedWi-Fi driver. When
Wi-Fi tethering is enabled, the firmware keeps theWi-Fi always
in a high power state. There is no interface available to change
the power states. After trying many methods, all that we can
do in the driver is to turn on/off the Wi-Fi interface when the
softAP decides to wake up/sleep. By modifying the source of
the driver, we hide the fact that the Wi-Fi interface is turned
off. Thus, applications and the OS can work as normal as if the
Wi-Fi interface is always on.
Energy Overhead of Turning On/Off the Wi-Fi: It costs extra

energy to switch on/off the Wi-Fi interface. We measured such
energy overhead on a Nexus One smartphone, and Fig. 11 shows
the measurement results. Initially, the Wi-Fi interface was off.
Then, we turned on the Wi-Fi interface for 100 ms and turned
it off again. We can observe two artifacts: First, when the Wi-Fi
interface is merely turned on without transmitting any packet,
the system stays in an average power state of 400 mW, which is
higher than the normal power consumption of Wi-Fi tethering
in the idle case as shown in Fig. 2. We think this part of over-
head is caused by the CPU and I/O operations for waking up
the Wi-Fi interface. Second, when the off command is issued,
the power consumption reduced immediately, but remains at a
power level as high as 150 mW for about 1 s before entering a
very low-power state of 10 mW. This finding is similar to what
the authors reported in [8]. They pointed out that when theWi-Fi
interface goes to sleep, it first enters a “light sleep” state and
then enters a “deep sleep” state after some time. We cannot con-
trol this behavior, but it significantly affects how much power
we can save. We want to point out that this is a platform-spe-
cific limitation caused by the restricted programmability over
the Wi-Fi hardware. Our design itself does not impose any lim-
itation. If the smartphone can incur less wakeup overhead or
enter the “deep sleep” state more quickly, our approach can save
much more power.
Parameter Values: We determine the parameter values

based on the real-world traces described in Section II. All the

parameters are set in a conservative way to handle the variations
of network conditions. We set thresh to 150 ms for triggering
a softAP to enter sleep mode. With this parameter, the chance
of sleeping is maximized, and the number of involved packets
is limited to avoid introducing more network latency. Due to
the overhead of wakeup, the sleep duration less than 100 ms
may not yield much power saving. Thus, we set min to 100 ms.
Considering the RTT of 3G and to limit the maximum extra
latency, we set max to 500 ms. The value of init varies between
100 and 500 ms. We set thresh_l to 3 s for switching to the long
sleep stage where the softAP periodically sleeps for 500 ms
(i.e., long equals to 500 ms). It should be noticed that different
Wi-Fi chipsets may have the different overhead of waking up,
thereby affecting the choice of the parameter values above.
The guideline is as follows: If the overhead is larger, then the
parameters should be adjusted to avoid sleeping too frequently.
Otherwise, it is better to set to gain more power saving.

V. EVALUATION

We evaluate the performance of DozyAP by answering the
following questions. 1) How much power can DozyAP save for
a mobile softAP in various applications? 2) What is the impact
of DozyAP on client-side power consumption? 3) How much
extra latency does DozyAP introduce? 4) How much power can
be saved in multiclient case? 5) What is the performance degra-
dation if clients are not changed?

A. Experiment Setup

Hardware Devices: We used a Nexus One smartphone as a
softAP with a China Unicom 3G connection (WCDMA), and
another Nexus One smartphone as a client to run applications.
Both smartphones run Android 2.3.6. We used a Monsoon
Power Monitor [3] to measure the power consumption. We
repeated every experiment for at least five times to compute
average results.
Applications and Methodology: We used five of the appli-

cations described in Section II, including news reading, book
reading, video streaming, search, and map. To make the exper-
iments repeatable, we analyze the captured trace of the applica-
tions to find out all the HTTP requests contained in the traces
except video streaming. Then, we wrote a test program in Java
to send out those HTTP requests with the exact same order and
timing as the traces. The program uses theWebView class in the
WebKit package [10]. Thus, we could easily repeat every exper-
iment. For the video streaming, we manually played the same
video clip.
Traces: To evaluate DozyAP with more diverse and realistic

traffic patterns, we asked the authors of MoodSense [11] for
the traces collected from real users. In MoodSense, the authors
conducted a two-month field study with 25 iPhone users and
collected their network traffic everyday using tcpdump [12]. We
selected the traces of the top eight most active 3G users. For each
of them, we further selected the trace of the day when the user
generated the largest 3G traffic volume. We used the eight-day
traces to evaluate the performance of DozyAP.

B. Power Consumption

Average Power: We first measured the power consumption
of a mobile softAP with DozyAP and without DozyAP. Besides
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Fig. 12. Power saving and energy saving of the softAP in idle (I), busy down-
load (D), and the five applications of news reading (N), book reading (B), video
streaming (V), search (S), and map (M).

the five applications, we also measured two extreme cases:
idle and busy download. In the idle case, we measured the
power consumption of the softAP with one client associated
but without any network traffic. In the busy download case,
we measured the power consumption of downloading a 1-MB
file from a Web server. The dark bars in Fig. 12 show the
average power saving of DozyAP. Without explicit mention,
the error bars depict the minimum and maximum values in all
the experiments. We see that DozyAP can reduce the average
power by 12.2%–32.8% for the five applications. In the idle
case, it can save power by 36.5%. Even for the busy download
case, the average power can be reduced by 3.3%. It is worth
noting that the power saving percentage is calculated in the total
power consumption of the whole system, including the power
consumed by CPU and 3G. 3G consumes significant power
when transmitting and receiving data. If we only consider the
power consumption of Wi-Fi, the power saving percentage will
be even higher in busy download and the five applications.
Total Energy: As DozyAP buffers packets and delays their

transmission, it may lead to longer application time compared
to the case without DozyAP. Thus, we also measured the total
energy for the busy download case and the five applications.
Total energy does not make sense for the idle case. The light
bars in Fig. 12 show the results. We see that DozyAP does not
increase the total energy. Instead, it can save the total energy
by 12.2%–32.9% for the five applications, which is almost the
same as the result of average power. As we show in Section V-C,
DozyAP indeed introduces very little network latency that has
negligible impact on the total energy. Even in the busy down-
load case, DozyAP can save the total energy by 2.3%.
Wi-Fi Interface Sleep Time: As we point out in Section IV,

with the current commercially available smartphones, forcing
the softAP to go to sleep or wake up can be only achieved by
turning off/on the Wi-Fi interface. That results in significant
overhead (see Fig. 11). If we have more control on the power
states of the Wi-Fi hardware (e.g., if we can directly modify
the firmware or if we have a MadWifi [13] style driver that
implements most MAC-layer functions in driver rather than in
firmware), DozyAP should be able to save significantly more
power.We measured howmuch time DozyAP can put theWi-Fi
interface of a mobile softAP to sleep. Fig. 13 shows the results.
We see that the Wi-Fi interface of a softAP can stay in sleep
mode for 47%–88% of the total time in the five applications.
Even in the busy download case, we can turn theWi-Fi interface
to sleep for 11% of the total time. These results demonstrate the

Fig. 13. Wi-Fi interface sleep time of the softAP in idle, busy download, and
the five applications.

Fig. 14. Wi-Fi interface sleep time calculated based on the traces of eight real
users.

potential of DozyAP to significantly reduce the power consump-
tion of Wi-Fi tethering. Given proper control over the Wi-Fi
hardware, more energy is expected to be saved from sleeping.
We also evaluated the Wi-Fi interface sleep time with the real

traces of the eight users in MoodSense [11]. To do it, we wrote a
program to analyze the packet interarrival time of the traces and
calculate the Wi-Fi interface sleep time as if these traces have
happened in Wi-Fi tethering. To make the calculation reason-
able, we ignored all the interpacket arrival intervals larger than
5min. That is, for any intervals larger than 5min, we treated it as
if the user stopped using the phone and turned Wi-Fi tethering
off. This treatment is conservative because a user may spend
more than 5 min to read a long news article or Wi-Fi tethering
might not be turned off even the user stopped using the phone for
5 min. Fig. 14 shows the calculated results. We see that DozyAP
is able to allow the Wi-Fi interface of a softAP stay in sleep
mode for 77%–95% of the time for the mixed multiapplication
user traffic. The numbers in Fig. 14 are higher than the ones in
Fig. 13. The reason is that the experiments in Fig. 13 focused on
single application usage only. In practice users may use multiple
applications one by one. Switching from one application to an-
other leads to more network idle time.
Power Consumption of a Client: We alsomeasured the power

consumption of the Nexus One client in the idle case, busy
download, and the five applications. Fig. 15 shows the results.
We see that DozyAP can increase the power consumption of the
client by less than 7.1% for these five applications. The reason
is that the client needs to wake up to receive the sleep requests
from the softAP and send back the sleep responses when the
network is idle. Thus, the idle case introduces the highest over-
head, but it is still only 8%. Compared to the large power saving
of the softAP, this small overhead is acceptable.
Multiple Applications on Single Client: In some cases, mul-

tiple applications may run on a single client simultaneously. We
evaluated DozyAP in a typical scenario where a user is reading
news in the foreground, meanwhile listening to online music in
the background. To do it, we first started Douban FM (which is
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Fig. 15. Power increasing of the Nexus One client in idle, busy download, and
the five applications.

Fig. 16. Finish time of busy download and the five applications.

a popular app in China like Last.fm). Once the music began to
load, we started the news reading program (the same as before)
immediately. The average power saving and energy saving over
10 experiments is 14.5% and 14.2% respectively.

C. Latency

DozyAP incurs extra network latency because it delays
packet transmissions when a softAP is in sleep mode. If the
extra latency is user-perceivable, it may impair user experi-
ence. As all the five applications are about fetching remote
Web content, users care about the page loading time, which is
the period from the time when a user sends out a Web page
request to the time when the Web page is fetched and rendered
by the browser. The page loading time metric is widely used
to evaluate the performance of browsers and Web servers.
We evaluated the finish time of loading content, which is the
sum of the page load time of all the Web page requests in an
application. The WebView object used in our test program
could tell when a Web page is loaded. In the experiments, we
sent out all the Web page requests of an application one by one
without any time interval and calculated the total finish time.
Fig. 16 shows the average result and the variance in busy

download and the five applications. We see that DozyAP intro-
duces very small extra network latency, ranging from 0.9% to
5.1%. Such small extra latency is hardly perceivable by users
because of two reasons. First, as the 3G network has limited
throughput and large RTT, it takes several hundred milliseconds
to even seconds to load a Web page. Second, the time variance
of the page loading time is pretty large, up to several seconds.
That is, even without DozyAP, users already experience long
page loading time with large variance. Therefore, the small la-
tency increase of less than 5.1% is very hard to detect.
In addition, we compared our adaptive sleeping algorithm to

BSD algorithm [7]. The reason why we choose BSD is that
it is the-state-of-the-art algorithm that can adapt the sleep du-
ration without the MAC-layer or lower-layer support. To be
fair, we investigated BSD and our algorithm based on the same
traffic traces collected from the user studies (as mentioned in

Fig. 17. BSD versus DozyAP in news reading (N), book reading (B), video
streaming (V), search (S), map (M), e-mail (E), and RSS (R).

Fig. 18. Power saving and energy saving of softAP with two clients.

Section II). The results are shown in Fig. 17. As we see, BSD al-
gorithmmay introduce extra network latency andmore wakeups
inmost cases. This extra latencymay delay the application finish
time. The increased number of wakeups may cost more energy
due to the wakeup overhead.

D. Multiple Clients

We first evaluated the performance of DozyAP with two
clients associated: a smartphone and a tablet. Each client ran
the same programs simultaneously. Fig. 18 shows the average
energy saving and power saving in busy download, the five
applications, and the idle case. As expected, the most power
and energy savings are lower than the ones in the single-client
scenario. However, the saving in the download case does not
drop as much as other applications. That is because no matter
if one or multiple clients were downloading, the cellular band-
width was similarly saturated so that the chance for softAP to
sleep is equivalent. Another finding is that the power saving
for video streaming has a significant drop from about 28% to
less than 10%. The reason is that two clients were competing
in streaming video so that both of them needed more time to
finish. Thus, the softAP had less opportunity to sleep.
We also conducted user studies to evaluate DozyAP with

more clients. In the experiments, four clients with two phones, a
tablet, and a laptop were tethered to a DozyAP-enabled smart-
phone. They were asked to access the Internet freely, such as
reading news, checking and replying e-mails, listening to In-
ternet radios, and searching interesting places on Google Maps.
Since clients behave differently in each experiment, it is diffi-
cult for us to obtain the ground truth about the power consump-
tion without DozyAP. Thus, we only measured the sleep time
to approximate the power saving and count the buffered packets
to show the incurred network latency. The results are shown in
Fig. 19. We see that DozyAP allows the Wi-Fi to sleep for 59%
of total application time and only causes about 1.4% delayed
packets. From the experiments in Figs. 12 and 13, we observed
that the sleep-to-power-saving translation ratio was around 18%
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Fig. 19. Performance of DozyAP with four clients. The ratios of sleep time
and delayed packets are measured, whereas the ratio of power saving is approx-
imated based on the ratio of sleep time.

–36%. Therefore, the approximated power saving for our four
client tests is about 16.2% on average.
It is worth noting that the energy gain of DozyAP mainly

depends on the traffic rather than the number of clients. Even if a
single client is associated, it may generate continuously bursty
traffic such as downloading. The power saving in that case is
still less than the case of multiple clients, but with sparse traffic.

E. Comparison to Client-Independent Solution

To show the necessity of changing clients, we compared
DozyAP to a straightforward client-independent solution,
where the AP periodically wakes up after a sleep. If not re-
ceiving any data, the AP waits for a fixed time period and then
goes back to sleep again. In this approach, the softAP wakes up
and sleeps without notifying clients, so the packets transmitted
by the clients may be lost. We use to denote the ratio of
the wakeup duration to the sleep duration and investigated the
performance degradation with varying .
We selected four applications including browsing Web sites

(both 3G and regular Web sites), searching, downloading, and
video streaming. The performance metrics are as follows.
• Timeout ratio: It depicts the percentage of the connection
timeout reported by the client’s Web browser. The connec-
tion timeout is caused by the loss of HTTP requests when
the client sent those requests but the softAP in sleep mode
did not receive them.

• Latency increasing ratio: With respect to page (or down-
load) finish time, latency increasing ratio presents the in-
creased latency normalized by the benchmark finish time
in DozyAP. A large ratio means that more delays are intro-
duced by the client-independent solutionmentioned above.

• Traffic increasing ratio: Due to the retransmission of lost
packets, the client may send or receive more packets.
Traffic increasing ratio is used to describe the percentage
of the number of increased packets to the number of total
packets.

• Power saving ratio and energy saving ratio: The meanings
of these metrics are the same as mentioned before. Note
that these metrics are measured on the AP side, whereas
the above three metrics are measured on the client side.

Table I shows the averaged results over 10 tests when
. Other values of yielded worse results, so we do not

present them here. As we see, without modifying the clients,
the timeout ratio is between 20%–40%, thereby impairing the
user experience of Internet access. Both latency and traffic
are heavily increased, where video streaming has the lowest

TABLE I
PERFORMANCE OF CLIENT-INDEPENDENT SOLUTION

increasing ratio and searching has the highest increasing ratio.
The power saving by the client-independent solution is com-
petitive to softAP because the Wi-Fi interface is also turned off
periodically. However, due to longer application finish time,
the client-independent solution actually spends more energy
than existing Wi-Fi tethering schemes. Therefore, it demands
modifying the clients to achieve better performance.

VI. DISCUSSION AND FUTURE WORK

DozyAP requires patching the OS of smartphones working
in Wi-Fi tethering and installing a loadable module on a client,
which may be a hurdle for device vendors to overcome in prac-
tice. Despite this, we believe this problem is not very difficult
to tackle, for instance, through Over-the-Air (OTA) upgrade. It
also may be difficult to upgrade the software of dumb Wi-Fi
client devices, e.g., music players and e-readers. However, to
access the Internet, most people use “smart” devices including
smartphones, tablets, and laptops. All these devices are pro-
grammable and upgradable. Although our current implementa-
tion is based on a Linux-style OS kernel including iOS, forWin-
dows-based devices, a similar approach can be used via la oad-
able Network Driver Interface Specification (NDIS) [14] driver.
DozyAP takes advantage of the speed discrepancy between

cellular and Wi-Fi. One may argue that such an advantage will
not exist when 4G is deployed. However, the speed of Wi-Fi
increases quickly as well. With 11n and 11ac, there is still a
big gap between cellular and Wi-Fi. In addition, our solution
benefits not only from such a speed discrepancy, but also from
the long content consuming time of users.
Our implementation uses fixed parameter values derived

from the measurement results, which can be improved. For ex-
ample, one may use a dynamic approach to tune the parameters
to better adapt to the network conditions. Even though we use
fixed values, we take a conservative way, e.g., the sleep time
starts from a small value of 100 ms. As shown in Fig. 8, the
tuning procedure of parameter init is also conservative.
More power can be saved through transmission power adap-

tation. The built-in Wi-Fi tethering on existing smartphones al-
ways uses the highest transmission power. It wastes energy be-
cause a softAP is often close to its clients inWi-Fi tethering. We
plan to design a scheme to automatically adjust the transmission
power based on the network conditions (e.g., RSSI and packet
loss). We also plan to further take advantage of the bandwidth
discrepancy between 3G andWi-Fi to create more opportunities
for a softAP to sleep. The basic idea is shaping the traffic be-
tween 3G andWi-Fi. For downlink traffic, the softAP can buffer
the packets received from 3G and send them to the client over
Wi-Fi in batch. For uplink traffic, if the 3G connection is con-
gested, the softAP can ask the client to stop sending more data.
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Thus, the Wi-Fi interface of both the softAP and the client can
sleep longer.
DozyAP could be implemented in the MAC layer for fur-

ther improvement if theWi-Fi firmware is open on smartphones.
The current implementation of DozyAP incurs the performance
penalty from three aspects. First, explicit transmission of sleep
request and response packets consumes extra power for both AP
and clients. Second, the overhead of switching on and off Wi-Fi
interface is considerable. Third, additional power consumption
is imposed by the CPU computation since DozyAP has to in-
volve the CPU to generate packets and run algorithms that are
supposed to run on Wi-Fi chipsets.

VII. RELATED WORK

Wi-Fi Power Saving: There has been a lot of research effort
devoted to power saving in Wi-Fi [7], [8], [15]–[22], focusing
on improving the existing PSM in general or targeting specific
applications or usage scenarios. To name some recent work,
Catnap [17] exploits the bandwidth discrepancy between Wi-Fi
and broadband to save energy for mobile devices. NAPman [22]
employs an energy-aware scheduling algorithm to reduce en-
ergy consumption by eliminating unnecessary retransmissions.
SleepWell [8] coordinates the activity circles of multiple APs to
allow client devices to sleep longer. All these solutions are for
Wi-Fi clients only. DozyAP is complementary, focusing on the
power efficiency of APs. Putting an AP to sleep is more chal-
lenging than putting a client to sleep because client devices ex-
pect that their AP is always on. To avoid packet loss, a softAP
in DozyAP must coordinate its sleep schedule with its clients,
which is different from existing work.
There is little work on power saving of APs. In [23] and

[24], the authors propose to extend the IEEE 802.11 standard
to support power-saving access points for multihop solar/bat-
tery-powered applications. Without building any real systems,
they focus on protocol analysis and simulation, assuming
Network Allocation Vector (NAV) can be used. Our work
focuses on system design and implementation. We build real
systems on commercial smartphones and do evaluation with
real experiments. In addition, the NAV-based approach cannot
work on existing smartphones because NAV is only visible
in firmware. Cool-Tether [1] considers an alternative way to
address the mobile hotspot problem that involves reversing
the role of the phone and the client. However, it significantly
increases the power consumption of the client and does not
support multiple clients. In [25], the authors design algorithms
to save power for APs with Wi-Fi Direct. Since Wi-Fi Direct is
a separate mode on devices, it cannot be used for tethering until
now. Furthermore, we measured the power consumption of
current Wi-Fi Direct-enabled devices, and it is slightly higher
than tethering.
Traffic-Driven Design: Adapting to traffic load for better

sleeping is not a new idea [15], [21]. Traffic patterns in dif-
ferent applications and scenarios have also been studied in
some papers, and the similar observations are identified (e.g.,
the large portion of network idle time) [7], [19]. DozyAP builds
on top of the basic techniques and applies them to the Wi-Fi
tethering scenario. Furthermore, DozyAP can be improved by

leveraging existing literature, e.g., by traffic shaping [17], [20]
and sleeping in short intervals [19].
Sleep Scheduling: Sleep/wake scheduling has been exten-

sively studied in Bluetooth domain, e.g., [26] and [27], and
sensor network domain, e.g., [28] and [29]. However, those
approaches usually focus on MAC-layer design, resulting in
a new MAC protocol, and often require time synchronization.
DozyAP employs a simple application-level protocol to coor-
dinate the sleep schedule of a softAP with its client, without
requiring time synchronization or any modifications on existing
IEEE 802.11 protocol. Thus, DozyAP is easy to deploy on ex-
isting smartphones.
Dedicated Wi-Fi Tethering Devices: MiFi [30] is a dedicated

mobile Wi-Fi hotspot device. However, such a device also stays
in a high power state even without any ongoing traffic. We
measured a Huawei E5830 MiFi device and found the average
power consumption was as high as 420 mW in idle case. We be-
lieve MiFi devices can benefit from DozyAP design if they are
programmable.

VIII. CONCLUSION

In this paper, we propose the DozyAP system to improve
the power efficiency of Wi-Fi tethering. DozyAP employs a
lightweight yet reliable sleep request-response protocol for a
mobile softAP to coordinate its sleep schedule with its clients
without requiring tight time synchronization. Based on our find-
ings on the traffic patterns of typical applications used in Wi-Fi
tethering, we design a two-stage adaptive sleep algorithm to
allow a mobile softAP to automatically adapt to the ongoing
traffic load for the best power saving. We have implemented
DozyAP system on commercial smartphones. Experimental re-
sults demonstrate that DozyAP is able to significantly reduce
the power consumption ofWi-Fi tethering without impairing the
user experience.
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