278 research outputs found

    Hierarchical Plant Responses and Diversity Loss after Nitrogen Addition: Testing Three Functionally-Based Hypotheses in the Inner Mongolia Grassland

    Get PDF
    Numerous studies have shown that nitrogen (N) deposition decreases biodiversity in terrestrial ecosystems. To explain the N-induced species loss, three functionally based hypotheses have been proposed: the aboveground competition hypothesis, the belowground competition hypothesis, and the total competition hypothesis. However, none of them is supported sufficiently by field experiments. A main challenge to testing these hypotheses is to ascertain the role of shoot and root competition in controlling plant responses to N enrichment. Simultaneously examining both aboveground and belowground responses in natural ecosystems is logistically complex, and has rarely been done.In a two-year N addition experiment conducted in a natural grassland ecosystem, we investigated both above- and belowground responses of plants at the individual, species, and community levels. Plants differed significantly in their responses to N addition across the different organizational levels. The community-level species loss was mainly due to the loss of perennial grasses and forbs, while the relative abundance of plant species was dependent mainly on individual-level responses. Plasticity in biomass allocation was much smaller within a species than between species, providing a biological basis for explaining the functionally based species loss. All species increased biomass allocation to aboveground parts, but species with high belowground allocations were replaced by those with high aboveground allocations, indicating that the increased aboveground competition was the key process responsible for the observed diversity loss after N addition in this grassland ecosystem.Our findings shed new light on the validity of the three competing hypotheses concerning species loss in response to N enrichment. They also have important implications for predicting the future impacts of N deposition on the structure and functioning of terrestrial ecosystems. In addition, we have developed a new technique for ascertaining the roles of aboveground and belowground competition in determining plant responses to N fertilization

    Grazing Alters Ecosystem Functioning and C:N:P Stoichiometry of Grasslands along a Regional Precipitation

    Get PDF
    Grasslands have experienced dramatic shifts in structure and functioning driven primarily by human disturbances and global climate change. The long-term grazing has resulted in widespread declines in biodiversity and ecosystem functioning and services. This is triggered by the direct and indirect effects of grazing and often mediated by the complex interactions between vegetation and environmental. Thus, it is critical to obtain a better understanding of how grazing, abiotic factors and biotic–abiotic interactions influence key properties of ecosystem functioning and sustainability and thereby provide guideline for improving grassland management practices in the Eurasian steppe. While abundant evidence demonstrates that heavy grazing alters the ecosystem structure and function of grass- lands, research on how grazing specifically affects ecosystem functioning and stoichiometry on broad scales is scarce because of a lack of adequate ungrazed reference sites. We examined the effects of grazing on ecosystem functioning and C:N:P stoichiometry along the 700 km China–Mongolia transect (CMT) using consistent methods. The CMT, which covers a wide range of biotic and abiotic conditions, enables us to observe the total effects of multiple mechanisms that probably operate simultaneously but vary in their relative strengths across regions. The key research questions we are trying to address are: 1) How has grazing affected ecosystem functioning (i.e. species richness, above- and below-ground biomass and litter biomass) and C:N:P stoichiometry of grasslands along the regional precipitation gradient during the last 50 years? 2) How do the responses of plant and soil C, N and P pools and stoichiometry to grazing differ among community types? 3) What is the relative importance of plant functional group (PFG) composition and species plasticity in influencing ecosystem functioning and stoichiometry

    Seasonal variation in the response of arbuscular mycorrhizal fungi to grazing intensity

    Get PDF
    Despite existing evidence of pronounced seasonality in arbuscular mycorrhizal (AM) fungal communities, little is known about the ecology of AM fungi in response to grazing intensity in different seasons. Here, we assessed AM fungal abundance, represented by soil hyphal length density (HLD), mycorrhizal root colonization intensity (MI), and arbuscule intensity (AI) throughout three seasons (spring, summer, autumn) in a farm-scale field experiment in typical, grazed steppe vegetation in northern China. Seven levels of field-manipulated, grazing intensities had been maintained for over 13 years within two topographies, flat and slope. We also measured soil nutrients and carbon content throughout the growing season to investigate whether seasonal variation in AM fungal abundance was related to seasonal shifts in soil resource availability along the grazing gradient. We further examined the association between AM fungal metrics in the different grazing treatments through the growing season. Our results showed a pronounced seasonal shift in HLD but there was no clear seasonality in MI and AI. HLD was significantly negatively related to grazing intensity over the course of the growing season from spring to autumn. However, MI and AI were related negatively to grazing intensity only in spring. In addition, differential responses of AM fungal abundance to grazing intensity at the two topographical sites were detected. No strong evidence was found for associations between AM fungal abundance and soil resource availability. Moreover, AM fungal internal and external abundance were correlated positively under the different grazing intensities throughout the growing season. Overall, our study suggests that external AM fungal structures in soil were more responsive to seasonal variation and grazing than internal structures in roots. The findings also suggest that early grazing may be detrimental to AM fungal root colonization of newly emerged plants

    Linking stoichiometric homeostasis with ecosystem structure, functioning, and stability

    Get PDF
    Ecosystem structure, functioning, and stability have been a focus of ecological and environmental sciences during the past two decades. The mechanisms underlying their relationship, however, are not well understood. Based on comprehensive studies in Inner Mongolia grassland, here we show that species-level stoichiometric homeostasis was consistently positively correlated with dominance and stability on both 2-year and 27-year temporal scales and across a 1200-km spatial transect. At the community level, stoichiometric homeostasis was also positively correlated with ecosystem function and stability in most cases. Thus, homeostatic species tend to have high and stable biomass; and ecosystems dominated by more homeostatic species have higher productivity and greater stability. By modulating organism responses to key environmental drivers, stoichiometric homeostasis appears to be a major mechanism responsible for the structure, functioning, and stability of grassland ecosystems

    Long-Term Grazing Intensity Impacts Belowground Carbon Allocation and Mycorrhizas Revealed by 13CO2 Pulse Labeling

    Get PDF
    Despite the importance of grasslands for carbon storage and climate regulation, there is uncertainty about the effect of livestock grazing intensity on aboveground carbon assimilation and belowground carbon partitioning. Furthermore, the relationship between belowground carbon allocation and arbuscular mycorrhizal fungi, which serve as a conduit for carbon movement through the plant and soil, is unclear. To investigate this, we used an in situ 13C stable isotope pulse-chase labeling approach in plots under seven rates of sheep grazing intensity in a steppe grassland in northern China. We quantified the allocation of carbon to plants, soil, and soil-respired CO2 along with measurements of mycorrhizal hyphal density in the soil. With increasing grazing intensity, carbon assimilation per unit shoot biomass increased significantly, whereas carbon allocation to roots marginally decreased. Soil-respired CO2 appeared to be independent of grazing intensity. Mycorrhizal hyphal density decreased with increasing grazing intensity and was correlated significantly with new carbon input to roots 2 d after labeling and marginally related to that of soil 1 d after the 13C-CO2 pulse. Our study suggests that grazing intensity alters the distribution of carbon among different carbon pools within the plant-soil system. The results also underscored the key role of mycorrhizas as a fast route for carbon transfer from plant to soil

    The Murine Reg3a Stimulated by Lactobacillus casei Promotes Intestinal Cell Proliferation and Inhibits the Multiplication of Porcine Diarrhea Causative Agent in vitro

    Get PDF
    Lactobacillus casei (L. casei), a normal resident of the gastrointestinal tract of mammals, has been extensively studied over the past few decades for its probiotic properties in clinical and animal models. Some studies have shown that some bacterium of Lactobacillus stimulate the production of antimicrobial peptides in intestinal cells to clear enteric pathogens, however, which antimicrobial peptides are produced by L. casei stimulation and its function are still not completely understood. In this study, we investigated the changes of antimicrobial peptides’ expression after intragastric administration of L. casei to mice. The bioinformatics analysis revealed there were nine genes strongly associated with up-regulated DEGs. But, of these, only the antimicrobial peptide mReg3a gene was continuously up-regulated, which was also confirmed by qRT-PCR. We found out the mReg3a expressed in engineering E.coli promoted cell proliferation and wound healing proved by CCK-8 assay and wound healing assay. Moreover, the tight junction proteins ZO-1 and E-cadherin in mReg3a treatment group were significantly higher than that in the control group under the final concentration of 0.2 mg/ml both in Porcine intestinal epithelial cells (IPEC-J2) and Mouse intestinal epithelial cells (IEC-6) (p < 0.05). Surprisingly, the recombinant mReg3a not only inhibited Enterotoxigenic Escherichia coli (ETEC), but also reduced the copy number of the piglet diarrheal viruses, porcine epidemic diarrhea virus (PEDV), porcine transmissible gastroenteritis virus (TGEV), and porcine rotavirus (PoRV), indicating the antimicrobial peptides mReg3a may be feed additives to resist the potential of the intestinal bacterial and viral diarrhea disease

    The response of grassland mycorrhizal fungal abundance to a range of long-term grazing intensities

    Get PDF
    Keystone root symbiotic arbuscular mycorrhizal fungi play a major role in maintaining plant biodiversity, increasing plant productivity and enhancing storage of carbon in soil. AM fungi are ubiquitous and found in most ecosystems including grasslands currently experiencing increasing pressures form human activity. Grazing is known to impact AM fungi but very little is known about how AM fungi are affected by different levels of grazing intensity. Here we report on results from a long-term experimental site in a typical steppe in the north of China, containing seven levels of field-manipulated grazing intensities maintained for over 13 years. We assessed arbuscular mycorrhizal fungal abundance, represented by soil hyphal length density and mycorrhizal root colonization (mycorrhizal root frequency, intensity and arbuscule intensity) within the farm-scale field experiment. We also measured environmental variables to explain the responses of mycorrhizal fungi to grazing intensity. Our results showed that with an increase in grazing intensity, soil hyphal length density linearly decreased. There was, however, no significant trend for mycorrhizal root colonization variables in relation to grazing intensity. Mycorrhizal root frequency was negatively correlated with topographic-induced changes in soil nitrogen and phosphorus, while arbuscule intensity was marginally negatively correlated with soil available phosphorus. Further, we found a possible hump-shaped relationship between the ratio of external to internal AM fungal structures and grazing intensity. Our finding showed that external AM fungal structure was clearly impacted by grazing intensity but that this was not the case for internal mycorrhizal structures. This indicated that mycorrhizal functioning was impacted by the intensity of grazing as the mycorrhizal structures responded differently. Indeed the ratio of the foraging extra-radical mycorrhizal hyphae to intra-radical mycorrhizal structures was highest at moderate grazing intensity but strongly decreased by high grazing intensity. Our study suggests that the impacts of grazing intensity on the plant-AMF association could lead to further knock-on effects on the plant-soil system via the feedbacks that exist between plant and AMF communities
    • …
    corecore