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Abstract 11 

Keystone root symbiotic arbuscular mycorrhizal fungi play a major role in maintaining plant biodiversity, 12 

increasing plant productivity and enhancing storage of carbon in soil. AM fungi are ubiquitous and found 13 

in most ecosystems including grasslands currently experiencing increasing pressures form human activity. 14 

Grazing is known to impact AM fungi but very little is known about how AM fungi are affected by different 15 

levels of grazing intensity. Here we report on results from a long-term experimental site in a typical steppe 16 

in the north of China, containing seven levels of field-manipulated grazing intensities maintained for over 17 

13 years. We assessed arbuscular mycorrhizal fungal abundance, represented by soil hyphal length density 18 

and mycorrhizal root colonization (mycorrhizal root frequency, intensity and arbuscule intensity) within 19 

the farm-scale field experiment. We also measured environmental variables to explain the responses of 20 

mycorrhizal fungi to grazing intensity. Our results showed that with an increase in grazing intensity, soil 21 

hyphal length density linearly decreased. There was, however, no significant trend for mycorrhizal root 22 

colonization variables in relation to grazing intensity. Mycorrhizal root frequency was negatively 23 

correlated with topographic-induced changes in soil nitrogen and phosphorus, while arbuscule intensity 24 
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was marginally negatively correlated with soil available phosphorus. Further, we found a possible hump-25 

shaped relationship between the ratio of external to internal AM fungal structures and grazing intensity. 26 

Our finding showed that external AM fungal structure was clearly impacted by grazing intensity but that 27 

this was not the case for internal mycorrhizal structures. This indicated that mycorrhizal functioning was 28 

impacted by the intensity of grazing as the mycorrhizal structures responded differently.  Indeed the ratio 29 

of the foraging extra-radical mycorrhizal hyphae to intra-radical mycorrhizal structures was highest at 30 

moderate grazing intensity but strongly decreased by high grazing intensity. Our study suggests that the 31 

impacts of grazing intensity on the plant-AMF association could lead to further knock-on effects on the 32 

plant-soil system via the feedbacks that exist between plant and AMF communities.  33 

Keywords: AMF, grassland, overgrazing, soil nutrients availability, topography, mixed-effects model 34 

1. Introduction 35 

Grasslands play a crucial role in global ecosystem functioning and human well-being (O'Mara, 2012; 36 

Steinfeld et al, 2006). However, many grasslands are currently facing great pressures, of which over-37 

grazing is one of the major drivers reducing grassland productivity and sustainability (Conant, 2010; 38 

O'Mara, 2012). Continuous excessive grazing for prolonged periods of time leads to the removal of plant 39 

biomass, changes plant community composition and increases soil erosion, resulting in a loss of grassland 40 

ecosystems productivity and the impoverishment of soil carbon stocks (Conant, 2010; McSherry & Ritchie, 41 

2013). In order to maintain the sustainability of these ecosystems and optimize grazing management, a 42 

better understanding of ecological factors underlying below-ground processes under grazing pressures is 43 

crucial, as the above- and below-ground parts of terrestrial ecosystems are strongly interconnected (Yang 44 

et al, 2018).  45 

Root symbiotic mycorrhizal fungi are key soil micro-organisms that play a vital role in maintaining 46 

grassland ecosystem productivity and stability (Asmelash et al, 2016; Moora & Zobel, 2010). 47 
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Approximately 72% of all vascular plant species are associated with the mutualist arbuscular mycorrhizal 48 

fungi (AM fungi) (Brundrett & Tedersoo, 2018). The fungal symbiont relies on carbon obtained from the 49 

plant roots in return for providing nutrients, in particular phosphorus, to the plant (Moora & Zobel, 2010; 50 

van der Heijden et al, 2006). Therefore, AM fungi can enhance plant grazing-tolerance by improving 51 

nutritional status and thereby improve plant productivity (Moora & Zobel, 2010; Walling & Zabinski, 52 

2006). 53 

 54 

Grazing can alter AM fungal communities and function through changes to the mycorrhizal environment 55 

including plant and soil conditions (Ba et al, 2012; Guo et al, 2016). Long-term grazing reduces plant 56 

productivity and biodiversity through eliminating photosynthetic plant tissues and removing grazing-57 

sensitive rare species or palatable dominant species (Schönbach et al, 2011; Shelton et al, 2014; Wang et 58 

al, 2014). Herbivory can alter nutrient dynamics positively through the addition of dung and urine to the 59 

soil, and negatively through the reduction of plant biomass production and litter accumulation (Metera 60 

et al, 2010; Vertès et al, 2019). Both plant composition and soil conditions affect AM fungal communities. 61 

Therefore, it is reasonable to assume that the extent of the grazing impact on AM fungal function and 62 

community structure is largely dependent on the number of livestock per unit area as this will have 63 

different levels of impact on above- and below-ground productivity and diversity (Ba et al, 2012; Yan et 64 

al, 2013).  65 

 66 

While overgrazing has destructive and irreversible negative impacts on plant community and soil 67 

properties, under-grazing can also be harmful to grassland biodiversity and functioning through less 68 

stimulation of plant growth and loss of grazing-dependent legumes and grasses (Metera et al, 2010). 69 

Moderate grazing has been shown to benefit grassland ecosystem conditions by the enhancement of 70 

natural fertilization, seed distribution, creating favorable conditions for annual and bi-annual species and 71 
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inducing periodic defoliation (Metera et al, 2010). However, the effects of different grazing intensities on 72 

AM fungi is still contentious. Most studies compared the effects of grazing on AM fungal abundance in 73 

grazed and un-grazed plots (Guo et al, 2016; Murray et al, 2010; van der Heyde et al, 2017), with very few 74 

assessing impacts along a gradient of grazing intensity such as that ranging from light to overgrazing (Ba 75 

et al, 2012; Mendoza et al, 2011b; Ren et al, 2018).   76 

 77 

Moreover, AM fungi exist in the two media of roots and soil, but most published studies focus either on 78 

AM fungal abundance within root by measuring mycorrhizal root colonization (Ba et al, 2012) or assessing 79 

the abundance in soil by determining the length of hyphae in the soil (Ren et al, 2018), with few studies 80 

examining both simultaneously (van der Heyde et al, 2017). However, as different AM fungal structures 81 

vary in their response to grazing (van der Heyde et al, 2017), the various responses of different AM fungal 82 

parameters to environmental stresses are important since they may reveal mechanisms underlying those 83 

responses (Smith & Read, 2008). 84 

 85 

Additionally, the effects of grazing on AM fungi is through grazing-induced changes in the environment 86 

experienced by the mycorrhizal fungi and this includes plant and soil-related factors (Guo et al, 2016; van 87 

der Heyde et al, 2017). Significant correlation between AM fungal variables and edaphic conditions such 88 

as soil organic carbon (Ren et al, 2018; Soudzilovskaia et al, 2015), nitrogen (Bai et al, 2013; Soudzilovskaia 89 

et al, 2015), phosphorus (Guo et al, 2016; Johnson et al, 2015), pH (Guo et al, 2016; Mendoza et al, 2011a), 90 

soil water content (Murray et al, 2010; van der Heijden et al, 2006) and soil bulk density (Augé, 2004; 91 

Simard & Austin, 2010) has been reported. Accordingly, a strong relationship between AM fungi and host 92 

plants has been documented for above-ground biomass (Ba et al, 2012; Hiiesalu et al, 2014), plant species 93 

richness (Ba et al, 2012; Chen et al, 2018) and diversity (Lekberg & Waller, 2016; Prober et al, 2015). It is, 94 

therefore, important to study not only the changes in AM fungal community in response to grazing, which 95 
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requires long-term monitoring to be able to detect changes robustly, but also the environmental 96 

conditions, which may be altered by grazing and mediate many aspects of plant-mycorrhizal interactions 97 

(Mendoza et al, 2011a; van der Heyde et al, 2017).  98 

 99 

Topography may also mediate grazing effects on AM fungal and mycorrhizal environment by altering 100 

resource availability (e.g. soil moisture, soil organic carbon and total nitrogen stocks) and plant community 101 

structure (Kölbl et al, 2011; Murray et al, 2010). Given that the plant-AM fungi association is 102 

fundamentally a symbiotic relationship based on nutrients exchange (Johnson et al, 2015; Powell & Rillig, 103 

2018), topographic gradients of moisture and nutrient availability may interact with grazing to influence 104 

AM fungi variables.  This interaction under natural environments requires further investigation.  105 

Here we undertook a study in a long-term farm-scale field experiment where seven levels of field-106 

manipulated grazing intensities have been maintained over 13 years within two topographic locations in 107 

a typical steppe in northern China. We aimed to assess (1) how AM fungal abundance changed in response 108 

to seven grazing intensities, (2) whether the impact of grazing was mediated by topography, and (3) which 109 

grazing- or topographic-induced changes in the mycorrhizal environment were associated with a change 110 

in AM fungal abundance. 111 

2. Methods 112 

2.1. Study Site 113 

The study was set up at the Sino-German grazing experimental site in Xilin River Basin (116° 42′ E; 43° 38′ 114 

N), Inner Mongolia, China, which is a steppe grassland ecosystem with a semi-arid, continental climate. 115 

We set up our experiment in 14 plots located in two topographic blocks, flat and slope blocks, with each 116 

block containing seven levels of grazing intensities (GI). Each plot contained an area of 2 ha. The “sloped 117 
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block” had a topographical slope of about 8 degrees, and the “flat block” had no noticeable slope. Each 118 

experimental plot was subjected to one level of grazing intensities, from 0 to 9 ewes per ha. Hereafter we 119 

define the GI by the number of grazers per hectare as 0 (no grazing), 1.5 (very light), 3 (light), 4.5 (light-120 

moderate), 6 (moderate), 7.5 (heavy) and 9 (overgrazing). Grazers were young female sheep (ewes) of 121 

about 35 kg live-weight. Ewes were put in plots for 90 days throughout the growing season from June and 122 

to September each year. Until we took samples in 2018, the grazing experiment had been run continuously 123 

for 13 years. A detailed description of the climate, vegetation cover, soil characteristics and the design of 124 

the experimental site can be found in previously published papers (Schönbach et al, 2011; Wan et al, 2011) 125 

and in the supplementary information (SI-1).   126 

2.2. Soil sampling 127 

Soil samples were taken in mid July 2018. In each plot, five evenly distributed double soil core samples (2 128 

cm diameter × 20 cm height) were collected for mycorrhizal and soil properties measurement. 129 

Immediately after collecting, samples were kept in an ice box with a temperature of around 0°C, and then 130 

stored at -20°C within 24 hours, and kept until analysis. In addition, five undisturbed cores (5 cm diameter 131 

and 5 cm deep) next to the sampling cores were collected to measure soil bulk density.  132 

2.3. AM fungal responses 133 

2.3.1. AM root colonization 134 

Roots were collected from five soil cores, comprising multiple plant species, in each plot. The roots were 135 

rinsed carefully with distilled water and a sonicator was used to remove the soil particles adhering to the 136 

root surface. Roots were cut into pieces ca. 1 cm long and then around 5 g of fine roots of each sample 137 

was rinsed in 2% KOH (w/v) at 90°C for 60 min and rinsed thoroughly in water using a fine sieve and then 138 

acidified in 2% HCl (v/v) for 30 min and stained in 0.05% (w/v) trypan blue: glycerol: lactic acid (1:2:1) for 139 
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30 min at 90 °C. Root segments of each sub-sample were rinsed with lactic acid: glycerol: dH2O (1:2:1), 140 

selected randomly and mounted onto slides in 50% glycerol. Thirty pieces of roots from each root sub-141 

sample were observed under a compound microscope (Nikon eclipse Ci-L) at ×200 and ×400 142 

magnification. Mycorrhizal root frequency (F%) (ratio of the number of colonized root fragments to the 143 

total number of analyzed root fragments), mycorrhizal colonization intensity in the root system (M%) 144 

(percentage of total segment length colonized) and arbuscule intensity (A%) (arbuscular abundance in the 145 

root system) were assessed according to the five-class system of Trouvelot (1986). We selected the 146 

Trouvelot (1986) method because it has been shown to provide more detailed information compared to 147 

the other commonly used method developed by McGonigle et al, (1990) (see Füzy et al (2015); Kokkoris 148 

et al (2019)).  149 

2.3.2. Hyphal length density (HLD) 150 

Soil hyphae were extracted from two sub-samples of 5 g soil from each soil core (140 samples in total) in 151 

500 ml of deionized water (dH2O) following a modified membrane filter technique from Jakobsen et al 152 

(1992) and Boddington et al (1999). The hyphae of AM fungi were identified based on microscopic 153 

features, namely angular, aseptate in appearance, and 1.0–13.4 μm in diameter (Boddington et al, 1999; 154 

Shen et al, 2016). The total length of hyphae (mm) was measured for a minimum 60 fields of view for each 155 

filter paper at × 100 magnification. The developed modified GIM (Gridline Intersect Method) equations 156 

based on (Tennant, 1975) were used for calculating the total length of hyphae (mm) per gram of soil (m 157 

g–1) (Shen et al, 2016) (SI-2).  158 

2.4. Soil properties 159 

Soil water content, pH, soil bulk density, organic carbon, available nitrogen and phosphorus were 160 

measured. Soil water content was measured using a Soil Moisture Measurement System (HS2 161 

HydroSense® II, Campbell Scientific, Inc. USA) during soil sampling at each sampling point. Soil pH was 162 
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gauged in a soil suspension of 1:1 soil-water ratio using an ion meter. Soil bulk density (g cm-3) was 163 

measured by drying the undisturbed soil cores for 12 hours at 105 °C before being weighed. Soil organic 164 

carbon was determined by the potassium dichromate method according to NY/T 1121.6-2006 (Standards 165 

of the agricultural industry of the PRC, 2006). Soil available phosphorus (Olsen-P) was extracted with NH 166 

4 F-HCl and determined by spectrophotometry following NY/T 1121.7-2014 (Standards of the agricultural 167 

industry of the PRC, 2014) and soil available nitrogen was measured according to DB/T 843-2007 168 

(Recommended local agricultural standards, 2007).  169 

2.5. Data analysis 170 

We conducted three analyses. First, we assessed grazing and topography effects on AM fungal variables 171 

by generalized linear mixed effect models. Response variables included (i) soil hyphal length density (ii) 172 

mycorrhizal root frequency (iii) mycorrhizal root intensity and (iv) arbuscule intensity. Explanatory 173 

variables were grazing intensity with interaction with topography, and random variables were study plot 174 

(nested by topography and grazing intensity). We run a full model first, then the best model was selected 175 

in conformity with Akaike’s information criterion (AIC) (Burnham & Anderson, 2004). 176 

In the second analyses, we assessed the relationship between AM fungal hyphal length density, 177 

mycorrhizal root colonization and environmental variables. Environmental variables included (i) soil 178 

available nitrogen, (ii) soil organic carbon, (iii) soil available phosphorus, (iv) pH, (v) soil bulk density, (vi) 179 

soil water content. As the effect of environmental conditions on AM fungal responses might not be 180 

independent within our soil cores, but could be homogeneous within the plot, we pooled data from the 181 

same plot, and analyzed the relationship between AM fungal measures and environmental variables by 182 

the mean of each plot using linear regression (see Crawley (2012) and Zuur et al (2009)).  183 

Finally, we examined environmental variables in response to different grazing intensity in different 184 

topographical blocks by linear mixed effect models. Linear mixed effect models were applied to available 185 
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nitrogen, carbon, phosphorus, pH, soil bulk density and soil water content with grazing intensity nested 186 

in topography and topography nested in site. Full model and best model (based on AIC) were both 187 

presented. 188 

All statistical analyses were conducted using R, version 3.5.2 (R Core Team, 2018). Linear and generalized 189 

linear mixed effect models were applied using “nlme” (Pinheiro et al, 2018) and “glmer” (Bates et al, 2015) 190 

packages respectively. Model selections were carried out in “MuMIn” package (Barton, 2018). All models 191 

were validated by checking the distribution of residuals following Zuur et al (2009).  192 

3. Results 193 

3.1. AM fungal responses to grazing intensity and topography 194 

Soil hyphal length density was strongly negatively related to grazing intensity (β=-0.43±0.08, P<0.001), 195 

and this grazing impact was consistent for both topographical blocks (Figure 1.a, SI-3). Conversely, no 196 

relationship between mycorrhizal root frequency (Figure 1.b), mycorrhizal root intensity and arbuscule 197 

intensity with grazing intensity were detected (Figure 1.c). However, the sloped block had significantly 198 

higher mycorrhizal root frequency (β=-0.68±0.25, P=0.006), mycorrhizal root intensity (β=4.27±2.05, 199 

P=0.059) and arbuscule intensity (β=2.39± 0.86, P=0.017) than the flat block. The interaction between 200 

grazing intensity and topography was not significant for these AM fungal variables. Additionally, we found 201 

a hump relationship between the ratio of external (hyphal length density in soil) to intra-radical AM fungal 202 

structures (mycorrhizal root intensity) and grazing intensity, and this appeared stronger in the flat area 203 

(Figure 2). The results of the linear model with moderate grazing (4.5) as a base shows that the ratio of 204 

external to intra-radical AM fungal structure in response to grazing intensity is higher in moderate grazing 205 

(4.5) than the other grazing intensities in the flat site. In the sloped site, significance might not be detected 206 

because of the overall lower values observed (Figure 2). 207 
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 208 

 209 

Figure 1. Soil mycorrhizal hyphal length density (a) mycorrhizal root frequency (b), mycorrhizal root intensity (c) and 210 

arbuscule intensity (d) in response to grazing gradient along two topographic conditions. Solid and hollow circles 211 

indicate mean and individual observations at each grazing intensity respectively. Lines are fitted regression lines 212 

from linear mixed-effects models (Table 1), where solid and dashed lines indicate significant (P<0.05) and non-213 

significant (P>0.05) relationships respectively.   214 

 215 
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 216 

Figure 2. Ratio of soil hyphal length density (external AM fungal structure) to mycorrhizal root intensity (intra-radical 217 

AM fungal structure) in response to grazing gradient along two topographic conditions. Solid and hollow circles 218 

indicate mean and individual observations at each grazing intensity respectively. Asterisks represent significance 219 

level obtained from the linear model with moderate grazing (4.5) as base (p < .001, "***", p < .01, "**", p < .05, "*", 220 

p < 0.1, "†", NS: non-significant).   221 

 222 

3.2. The association between AM fungi and environmental variables 223 

Soil hyphal length density was positively related to pH (Table 1). Mycorrhizal root frequency was positively 224 

related with soil water content and organic carbon but negatively related with available nitrogen and 225 

available phosphorus. Mycorrhizal root intensity and arbuscule intensity were positively related with 226 

organic carbon and soil water content (Table 1).  227 

 228 

 229 



 

12 
 

Table 1. Relationship between environmental variables and AM fungi.  230 

Environmental variables HLD F% M% A% 

Organic Carbon (g/kg) 2.42±1.28 (0.084) 18.69±8.04 (0.039)  8.03±3.55 (0.043) 4.58±1.42 (0.007) 

Available Nitrogen (g/kg) 0.01±0.09 (0.95)  -1.16± 0.49 (0.036) -0.30±0.24 (0.247)  -0.16±0.11 (0.167)   

Available Phosphorus (g/kg) -0.14±0.36 (0.69)   -5.21±1.85 (0.016)  -1.37±0.97 (0.180)   -0.81±0.42 (0.076)   

pH 3.71±1.35 (0.018) -14.82±10.55 (0.186) -8.47±4.34 (0.075)  -3.32±2.07 (0.134) 

Soil Water Content (%) 0.03±0.10 (0.803)   1.33±0.56 (0.034)  0.53±0.25 (0.056) 0.29 ±0.11 (0.021) 

Bulk Density (g/cm3) -6.92±6.91 (0.336) -3.78±47.64 (0.938) -12.83±20.51 (0.543)  -0.91±9.53 (0.925) 

Regression coefficients and relative p-value were estimated by linear regression model. Significant relationships are indicated in 231 

bold font. Abbreviation: HLD: soil hyphal length density (m/g), F%: mycorrhizal root frequency (%), M%: mycorrhizal root Intensity 232 

(%), A%: arbuscule intensity.   233 

 234 

3.3. Responses of environmental variables to grazing intensity and topography 235 

Among soil variables, pH was negatively affected by grazing intensity while soil bulk density significantly 236 

increased with grazing intensity (Table 2) (SI-3-b and c). No relationships between soil organic carbon, soil 237 

water content, available nitrogen and phosphorus with grazing intensity were detected (SI-3-b and c).  238 

Comparing the two topographical blocks, the flat block had higher soil nitrogen, phosphorus and pH, but 239 

lower soil water content and soil organic carbon than the sloped block (Table 2). In addition, significant 240 

interactions between grazing intensity and topography were only observed for soil organic carbon and 241 

bulk density (Table 2). 242 

 243 

 244 

 245 

 246 

 247 
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Table 2. Linear mixed-effects model of the effects of grazing intensity and topography on environmental variables.  248 

The full model (model No. 1) and the best model selected according Akaike’s information criteria (AIC) (model No. 2) are 249 

presented; dashes (-) indicate variables that were not included in the model. 250 

 251 

4. Discussion  252 

In this study, we investigated AM fungal abundance in grassland along a range of long-term grazing 253 

intensities. Our first finding is that soil hyphal length density significantly decreased as grazing intensity 254 

increased. This is explained by the impact of grazing on plant community and soil conditions. Indeed it has 255 

been observed in previous studies that long-term livestock grazing reduced soil fungal hyphal length 256 

density in grassland ecosystems (Ren et al, 2018; van der Heyde et al, 2017). Generally, long-term livestock 257 

grazing decreases plant diversity via loss of grazing-sensitive rare species or removal of palatable 258 

dominant or sub-dominant plant species from species pool (Schönbach et al, 2011; Shelton et al, 2014; 259 

Wang et al, 2014). It leads to a decline in the range of below-ground plant root types and root exudates 260 

and consequently decreases the variability of root exudates and soil resources for soil microorganisms 261 

including AM root-associated fungi (Ba et al, 2012; Epelde et al, 2017; Wan et al, 2011). For example, 262 

hyphal extension and germination of AM fungal spores preferentially takes place in the presence of roots 263 

and root exudates (Smith & Read, 2008; Tahat et al, 2010). Consistent with this view, a positive significant 264 

relationship between plant diversity and soil hyphal length density has been reported recently in the same 265 

Response variables Model 
No. 

Grazing Intensity Topography Grazing Intensity x 
Topography Interaction 

AIC 

Organic Carbon (mg/kg) 1 0.00±0.03(0.859) 0.73±0.16 (0.001) -0.10±0.03 (0.006) 45.1   

Available Nitrogen  1 -0.56±0.33 (0.113) -10.52± 2.45 (0.002) 0.56± 0.45 (0.245) 434.8   
(mg/kg) 2 - -8.00±1.49(0.000) - 432.7   

Available Phosphorus  1 0.06±0.07 (0.461) -1.79±0.55(0.008) -0.07±0.10 (0.485) 211.0 
(mg/kg) 2 - -2.12±0.31(0.000) - 227.8 

pH 1 -0.05±0.02(0.013) -0.30±0.14(0.054) 0.00±0.03(0.923) 38.5 
 2 -0.05±0.01 (0.002) -0.28±0.08(0.003)  35.9 

Soil Water Content (%) 1 -0.35±0.21(0.127) 6.79±1.59 (0.002) 0.20±0.30(0.511) 363.0   
 2 -0.25±0.15(0.126) 7.70±0.89 (0.000) - 360.9   

Bulk Density (g/cm3) 1 0.02±0.00 (0.005) 0.10±0.03 (0.008) -0.02±0.01(0.009) -155.4 
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site (Ren et al, 2018). In addition, livestock trampling and treading disrupts the hyphal networks in the soil 266 

via increasing soil compaction and soil bulk density (Hao & He, 2019; van der Heyde et al, 2017). Along 267 

with this expectation, we observed soil bulk density was significantly negatively related to grazing 268 

intensity. Moreover, long-term grazing exerts a negative impact on soil pH (Guo et al, 2016; van der Heyde 269 

et al, 2017), while lower pH and soil acidification suppresses microbial growth and activities through lower 270 

nutrient use efficiency (Zhang et al, 2008). This phenomenon agrees with our finding of positive 271 

relationship between pH and soil hyphal length.  272 

 273 

We did not observe an association between mycorrhizal root colonization (frequency and intensity) and 274 

grazing intensity. These results are consistent with the findings of a meta-analysis of 99 experiments which 275 

showed that actual herbivory or simulated grazing decreased mycorrhizal colonization by considerable 276 

amounts in only a limited number of studies (Barto & Rillig, 2010). Similarly, van der Heyde et al (2017) 277 

reported no grazing effect on mycorrhizal root colonization in grazed sites compared to non-grazed ones 278 

in nine grasslands in Canada. However, both positive (Eom et al, 2001; Wearn & Gange, 2007), and 279 

negative (Ba et al, 2012; Birhane et al, 2017; Cavagnaro et al, 2018) effects of large herbivores on root 280 

colonization have also been documented. It is worth considering that total length of root colonized may 281 

decrease following herbivory but percent root colonization, as a relative measure, may remain unchanged 282 

(van der Heyde et al, 2017). Although microscopic classical approaches for estimating percent root length 283 

colonization provide greater resolution of AM fungal structures, these approaches fail to describe the 284 

amount of AM fungi in a whole root system due to not accounting for the total root length (Hart & Reader, 285 

2002). In addition, percent root length colonization doesn’t account for number of structures that were 286 

observed at each intersection, which means that AM fungal biomass cannot be easily deduced.  287 

Apart from these limitations in the assessment of mycorrhizal root colonization measurement, conflicting 288 
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results are also attributed to the context-dependent nature of the symbiotic association (Alzarhani et al, 289 

2019; Hoeksema et al, 2010; Smith et al, 2010; Tao et al, 2016) and to the mycorrhizal environment itself 290 

(Ba et al, 2012; van der Heyde et al, 2017). We found significant positive relationships between 291 

mycorrhizal root frequency and soil water content and significant negative relations between mycorrhizal 292 

root frequency, soil available nitrogen and phosphorus as reported at other sites (Binet et al, 2017; 293 

Birgander et al, 2014; Soudzilovskaia et al, 2015).  294 

 295 

The two topographic locations in our study site, flat and sloped, were significantly distinct in terms of soil 296 

water content and soil resource availability. Soil available nitrogen and phosphorus were significantly 297 

higher in the flat area compared with the sloped area, therefore, the sloped areas were more nutrient 298 

limited. Indeed, our data showed AM fungal root frequency, intensity and arbuscule intensity were lower 299 

in the more nutrient limited sloped area. This result is consistent with the theory that plants benefit most 300 

from their mutualistic symbiotic fungi in nutrient limited soils while benefit least in highly fertile soils 301 

(Hoeksema et al, 2010; Johnson et al, 2015). Additionally, we found a higher soil organic carbon in the 302 

sloped area than in the flat area and higher mycorrhizal frequency and intensity in the sloped area than 303 

in the flat one. Given that arbuscular mycorrhizal symbiosis is a carbon and nutrients tradeoff between 304 

plant and fungal partner (Hodge et al, 2010), it is likely that plants are more dependent on mycorrhizal 305 

fungi for obtaining nutrients in the sloped area, which is more nutrient limited.  In this case plants would 306 

allocate more carbon below-ground in exchange for these additional nutrients provided by their AM fungi 307 

symbionts.  308 

 309 

Interestingly, we found a hump-shaped relationship between the ratio of external (hyphal length density 310 

in soil) to internal AM fungal structures (mycorrhizal root intensity) and grazing intensity, particularly in 311 

flat area. Compared to the control, this ratio first decreased (less external hyphae per unit internal 312 
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hyphae) at low grazing intensities (1.5 and 3 ewe/ha), then increased at moderate grazing intensity (4.5 313 

ewe/ha) before decreasing as grazing intensity increased to the higher values (9 ewe/ha). It is important 314 

to note that the values for internal colonization by AM fungal structures are in a similar range and 315 

relatively constant throughout the range of grazing intensities while that of external mycorrhizal hyphae 316 

varies with grazing intensity. Given that this relationship has not been reported previously, the 317 

observation of a potential hump-shape relationship could, if real, have large implications for grazing 318 

management.  319 

The exact mechanism by which grazing intensity is impacting the various mycorrhizal structures is not 320 

known. It is possible that the initial decrease at low grazing intensity is due to selective grazing (Wan et 321 

al, 2015), resulting in more palatable (Ren et al, 2012; Wan et al, 2015) and more mycorrhizal dependent 322 

plant species being removed which are associated with larger mycorrhizal hyphal networks. Therefore, 323 

reduction in the abundance of more mycorrhizal dependent plants would lead to less external hyphal 324 

density. The increase in this ratio of external hyphae to internal colonisation at moderate grazing intensity 325 

could be due to moderately grazed plants needing more nutrients to fund shoot regrowth (Harvey et al, 326 

2019; van der Heyde et al, 2019), thus investing in AM fungi with larger external hyphal networks to search 327 

for more nutrients, particularly phosphorus. It is more cost effective for plants to invest in exploring 328 

increased soil volume via their mutualistic AM fungi partners than by expanding their root system (Jansa 329 

et al, 2013). The final reduction in this ratio at high grazing intensity could be due to the excessive grazing 330 

imposing carbon stress on plants (Ba et al, 2012) via large removal of above-ground biomass and thus 331 

decreasing below-ground carbon allocation to AM fungal root colonizers. In this case, less carbon is 332 

available for external hyphal growth despite good levels of root colonization. Further research would be 333 

needed to test whether these hypotheses are correct. 334 

 335 

5. Conclusion 336 
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Overall, our study provides new insights on the effects of the intensity of long-term grazing on AM fungal 337 

abundance driven by changes in environmental variables. Whilst we acknowledge that a fully replicated 338 

block design with multiple plots under the same grazing intensity could strengthen the study, to repeat 339 

such a large-scale experiment with multiple large plots (in this case a total 14 plots of 2 hectares each) is 340 

extremely expensive and unrealistic.  Nonetheless, our results clearly showed that, in the study site, soil 341 

hyphal length density was negatively related with grazing intensity irrespective of topographic location. 342 

Our main finding suggests that it’s the grazing intensity rather than grazing per se that determines the 343 

impact of grazing on mycorrhizas. This is novel and of clear importance to soil management approaches. 344 

While further research is essential to better understand how grazing intensity impacts the belowground 345 

ecosystem, changes in mycorrhizal hyphal density along a range of grazing intensities could be significant 346 

for soil carbon sequestration, which is critical in the face of accelerating climate change. That mycorrhizal 347 

root colonization variables were not related to grazing intensity requires further work to confirm the 348 

reasons as many confounding factors exist. For example, it is possible that effects exist but were masked 349 

by differential plant or fungal species responses.  350 

 351 

The fact that one measure (external hyphal density) of the mycorrhizal community was clearly impacted 352 

by grazing intensity, but not other measures (mycorrhizal root colonization), means that mycorrhizal 353 

functioning was impacted. This is supported by the observation that the ratio of the foraging extra-radical 354 

mycorrhizal hyphae to intra-radical mycorrhizal structures was altered. This impact of grazing intensity on 355 

the ratio of external to internal mycorrhizal structures does require further testing. Nonetheless, in time, 356 

the impacts of grazing intensity on mycorrhizal fungi reported in this study would lead to further knock-357 

on effects on the plant-soil system via altered interspecific competition within both plants and AM fungi 358 

communities. Indeed, consequences for ecosystem functioning could be significant as plant and AM fungi 359 

communities are intimately linked and diversity aboveground can drive diversity belowground and vice 360 
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versa. Altered nutrient uptake capacity by the AM fungal community would lead to some plant species 361 

benefitting at the expense of others (e.g. less mycorrhizal dependent species) altering plant community 362 

structure. The potential impacts of this change in mycorrhizal hyphal density is also significant for soil 363 

carbon sequestration as AM fungi can account for up to 20 % of host plant photosynthate (Smith & Read, 364 

2008) and are a rapid pathway of carbon flow to the soil (Staddon et al, 2014). This implication for the soil 365 

carbon cycle in grasslands clearly deserves further investigation. By increasing our understanding of the 366 

impacts of land management regimes on belowground ecology we will approach the goal of sustainable 367 

plant and livestock production. Managing grasslands with an aim of maintaining soil biodiversity and soil 368 

ecosystem processes is fundamental to the sustainability of grazed grasslands worldwide and crucial to 369 

food security in the face of accelerating climate change. 370 
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