1,015 research outputs found

    Signal Processing for Nondifferentiable Data Defined on Cantor Sets: A Local Fractional Fourier Series Approach

    Get PDF
    From the signal processing point of view, the nondifferentiable data defined on the Cantor sets are investigated in this paper. The local fractional Fourier series is used to process the signals, which are the local fractional continuous functions. Our results can be observed as significant extensions of the previously known results for the Fourier series in the framework of the local fractional calculus. Some examples are given to illustrate the efficiency and implementation of the present method

    Rigid vortices in MgB2

    Full text link
    Magnetic relaxation of high-pressure synthesized MgB2_2 bulks with different thickness is investigated. It is found that the superconducting dia-magnetic moment depends on time in a logarithmic way; the flux-creep activation energy decreases linearly with the current density (as expected by Kim-Anderson model); and the activation energy increases linearly with the thickness of sample when it is thinner than about 1 mm. These features suggest that the vortices in the MgB2_2 are rather rigid, and the pinning and creep can be well described by Kim-Anderson model.Comment: Typo corrected & reference adde

    A Bilevel Optimization Approach for Joint Offloading Decision and Resource Allocation in Cooperative Mobile Edge Computing

    Get PDF
    This paper studies a multi-user cooperative mobile edge computing offloading (CoMECO) system in a multi-user interference environment, in which delay-sensitive tasks may be executed on local devices, cooperative devices, or the primary MEC server. In this system, we jointly optimize the offloading decision and computation resource allocation for minimizing the total energy consumption of all mobile users under the delay constraint. If this problem is solved directly, the offloading decision and computation resource allocation are generally generated separately at the same time. Note, however, that they are closely coupled. Therefore, under this condition, their dependency is not well considered, thus leading to poor performance. We transform this problem into a bilevel optimization problem, in which the offloading decision is generated in the upper level, and then the optimal allocation of computation resources is obtained in the lower level based on the given offloading decision. In this way, the dependency between the offloading decision and computation resource allocation can be fully taken into account. Subsequently, a bilevel optimization approach, called BiJOR, is proposed. In BiJOR, candidate modes are first pruned to reduce the number of infeasible offloading decisions. Afterward, the upper level optimization problem is solved by ant colony system (ACS). Furthermore, a sorting strategy is incorporated into ACS to construct feasible offloading decisions with a higher probability and a local search operator is designed in ACS to accelerate the convergence. For the lower level optimization problem, it is solved by the monotonic optimization method. In addition, BiJOR is extended to deal with a complex scenario with the channel selection. Extensive experiments are carried out to investigate the performance of BiJOR on two sets of instances with up to 400 mobile users. The experimental results demonstrate the effectiveness of BiJOR and the superiority of the CoMECO system

    An Adaptive Framework to Tune the Coordinate Systems in Nature-Inspired Optimization Algorithms

    Get PDF
    The performance of many nature-inspired optimization algorithms (NIOAs) depends strongly on their implemented coordinate system. However, the commonly used coordinate system is fixed and not well suited for different function landscapes, NIOAs thus might not search efficiently. To overcome this shortcoming, in this paper we propose a framework, named ACoS, to adaptively tune the coordinate systems in NIOAs. In ACoS, an Eigen coordinate system is established by making use of the cumulative population distribution information, which can be obtained based on a covariance matrix adaptation strategy and an additional archiving mechanism. Since the population distribution information can reflect the features of the function landscape to some extent, NIOAs in the Eigen coordinate system have the capability to identify the modality of the function landscape. In addition, the Eigen coordinate system is coupled with the original coordinate system, and they are selected according to a probability vector. The probability vector aims to determine the selection ratio of each coordinate system for each individual, and is adaptively updated based on the collected information from the offspring. ACoS has been applied to two of the most popular paradigms of NIOAs, i.e., particle swarm optimization and differential evolution, for solving 30 test functions with 30D and 50D at the 2014 IEEE Congress on Evolutionary Computation. The experimental studies demonstrate its effectiveness

    Revisiting the Pion Leading-Twist Distribution Amplitude within the QCD Background Field Theory

    Full text link
    We study the pion leading-twist distribution amplitude (DA) within the framework of SVZ sum rules under the background field theory. To improve the accuracy of the sum rules, we expand both the quark propagator and the vertex (z\cdot \tensor{D})^n of the correlator up to dimension-six operators in the background field theory. The sum rules for the pion DA moments are obtained, in which all condensates up to dimension-six have been taken into consideration. Using the sum rules, we obtain \left|_{\rm 1\;GeV} = 0.338 \pm 0.032, \left|_{\rm 1\;GeV} = 0.211 \pm 0.030 and \left|_{\rm 1\;GeV} = 0.163 \pm 0.030. It is shown that the dimension-six condensates shall provide sizable contributions to the pion DA moments. We show that the first Gegenbauer moment of the pion leading-twist DA is a2π1  GeV=0.403±0.093a^\pi_2|_{\rm 1\;GeV} = 0.403 \pm 0.093, which is consistent with those obtained in the literature within errors but prefers a larger central value as indicated by lattice QCD predictions.Comment: 13 pages, 7 figure

    Two Case Reports of Familial Chylomicronemia Syndrome

    Get PDF
    Familial chylomicronemia is a rare autosomal recessive disorder which is also called Hyperlipoproteinemia type I. Here we report two cases with this rare disorder that were admitted to our hospital in recent years

    Safety of Mesenchymal Stem Cells for Clinical Application

    Get PDF
    Mesenchymal stem cells (MSCs) hold great promise as therapeutic agents in regenerative medicine and autoimmune diseases, based on their differentiation abilities and immunosuppressive properties. However, the therapeutic applications raise a series of questions about the safety of culture-expanded MSCs for human use. This paper summarized recent findings about safety issues of MSCs, in particular their genetic stability in long-term in vitro expansion, their cryopreservation, banking, and the role of serum in the preparation of MSCs
    corecore