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From the signal processing point of view, the nondifferentiable data defined on the Cantor sets are investigated in this paper. The
local fractional Fourier series is used to process the signals, which are the local fractional continuous functions. Our results can be
observed as significant extensions of the previously known results for the Fourier series in the framework of the local fractional
calculus. Some examples are given to illustrate the efficiency and implementation of the present method.

1. Introduction

Fractional derivatives [1, 2], like the Caputo derivative, the
Riemann-Liouville derivative, and the Grünwald-Letnikov
derivative, were applied to model some anomalous phenom-
ena, such as the anomalous diffusion [3, 4], Brownianmotion
[5], relaxation in dielectrics [6], transport of particles [7],
and reaction kinetics [8]. From the signal processing point
of view, the fractional-order signal processing is anomalous
behavior of nature from practice activity. In literature [9–16],
many researchers employed the fractional calculus theory to
handle signals, which are continuous characteristics (having
a similar behavior). Some applications of the fractional-order
signal processing to electrochemical noises were presented
[15]. In [16], Tao and coauthors suggested the signal process-
ing by using the fractional Fourier transform.The short time
fractional Fourier transform was used to handle the robotic
manipulators with vibrations in [17]. The fractional wavelet
transform for processing the composite signals of the active
compounds was considered in [18].

There is also a class of signals of the random sequences,
which have a fractal behavior, and some methods were
suggested in [19–21]. Some signals are defined on the Cantor
sets, such as the Cantor function and Cantor-like functions,
which are nondifferentiable data.

Figure 1 shows an example of a signal for a Cantor
function object while in Figures 2 and 3 there are some
examples of signals on the Cantor-like functions defined on
the Cantor sets.

With these signals being defined on Cantor sets, classical
methods of signal analysis are not efficient to deal with
them. To overcome these drawbacks, suitablemethods for the
signals on the Cantor sets are developed, such as the local
fractional Fourier series [22–27], wavelet transform [28], and
its discrete version [29].

In view of the special characteristics of the local fractional
Fourier series [22, 23], as alternativemethod for Fourier series
based upon the local fractional calculus, the aim of this paper
is to investigate the signal processing of nondifferentiable
data defined on the Cantor sets, which is a special case
of local fractional continuous function [30]. The paper has
been organized as follows. Section 2 gives the fundamental
concepts of local fractional Fourier series. In Section 3,
the nondifferentiable data defined on the Cantor sets are
processed. Conclusions are given in Section 4.

2. Mathematical Tools

In this section, we present the fundamental concepts for the
local fractional Fourier series and some results for the local
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Figure 1: The Cantor function.
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Figure 2: The Cantor-like function defined on the Cantor sets.

fractional integral operator [22–27], which are used in this
paper.

If, for 𝑥 ∈ (𝑎, 𝑏), a function 𝑓(𝑥) fulfills the condition

󵄨
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󵄨
󵄨
𝑓 (𝑥) − 𝑓 (𝑥

0
)
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𝛼
, (1)

with |𝑥 − 𝑥
0
| < 𝛿, for 𝜀, 𝛿 > 0 and 𝜀, 𝛿 ∈ 𝑅, then 𝑓(𝑥) ∈

𝐶
𝛼
(𝑎, 𝑏); namely, it is the so-called local fractional continuous

on the interval (𝑎, 𝑏). If the fractal dimension 𝛼 is equal to 1,
this definition reduces to the classical one.

Let 𝑓(𝑥) ∈ 𝐶
𝛼
(−∞,∞). Local fractional trigonometric

Fourier series of 𝑓(𝑥) is given by [22–27]
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Figure 3: Another Cantor-like function defined on the same Cantor
sets.

The local fractional Fourier coefficients read as follows [22–
27]:

𝑎
0
=

Γ (1 + 𝛼)

𝑇
𝛼 0

𝐼
(𝛼)

𝑇
𝑓 (𝑥) , (3)

𝑎
𝑘
=

2
𝛼
Γ (1 + 𝛼)

𝑇
𝛼 0

𝐼
(𝛼)

𝑇
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𝜔
𝛼

0
𝑥
𝛼
) , (4)

𝑏
𝑘
=

2
𝛼
Γ (1 + 𝛼)

𝑇
𝛼 0

𝐼
(𝛼)
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𝛼
(𝑘
𝛼
𝜔
𝛼

0
𝑥
𝛼
) , (5)

where the local fractional integral of 𝑓(𝑥) of order 𝛼 in the
interval [𝑎, 𝑏] is defined as [22–30]

𝑎
𝐼
(𝛼)

𝑏
𝑓 (𝑥) =

1

Γ (1 + 𝛼)

∫

𝑏

𝑎

𝑓 (𝑡) (𝑑𝑡)
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1
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𝑗
) (Δ𝑡
𝑗
)

𝛼

,

(6)

where the partition of the interval [𝑎, 𝑏] is denoted as Δ𝑡
𝑗
=

𝑡
𝑗+1

− 𝑡
𝑗
, Δ𝑡 = max{Δ𝑡

0
, Δ𝑡
1
, . . . , Δ𝑡

𝑗
, . . .}, and 𝑗 = 0, . . . , 𝑁 −

1, 𝑡
0
= 𝑎, and 𝑡

𝑁
= 𝑏. For more details on the local fractional

Fourier series, see [22–27].
The Lebesgue-Cantor staircase function is defined by [30]

𝐻
𝛼
(𝐹 ∩ (0, 𝑥)) = Γ (1 + 𝛼)

0
𝐼
(𝛼)

𝑥
1, (7)

where 𝐹 is a Cantor set,𝐻
𝛼
(⋅) is the 𝛼 dimensional Hausdorff

measure,
0
𝐼
(𝛼)

𝑥
(⋅) is the local fractional integral operator [24–

30], and Γ(⋅) is the Gamma function.
Following (7), we obtain [24, 30]

𝐻
𝛼 (
𝐹 ∩ (0, 𝑥)) = 𝑥

𝛼
, (8)

which is the Lebesgue-Cantor staircase function.
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Some useful formulas, which are used in this paper, are
presented as follows [30]:
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+

1

𝑎
4𝛼
[

𝑥
𝛼

Γ (1 + 𝛼)
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𝛼
(𝑎
𝛼
𝑥
𝛼
)

−

1

𝑎
𝛼
sin
𝛼
(𝑎
𝛼
𝑥
𝛼
)] ,

(15)

0
𝐼
(𝛼)

𝑥

𝑥
𝑘𝛼

Γ (1 + 𝑘𝛼)

=

𝑥
(𝑘+1)𝛼

Γ [1 + (𝑘 + 1) 𝛼]

. (16)

3. Signal Processing for Data Defined on
the Cantor Sets

This section deals with the nondifferentiable data defined on
the Cantor sets. Some examples of nondifferentiable func-
tions defined on the Cantor sets are given and the corre-
sponding local fractional Fourier series are explicitly com-
puted.

Example 1. We present the nondifferentiable data defined on
the Cantor sets in the following form:

𝑓 (𝑡) =

𝑡
𝛼

Γ (1 + 𝛼)

, (0 ≤ 𝑡 ≤ 2𝜋) , (17)

where the fractal dimension 𝛼 is equal to ln 2/ ln 3.
Using (3), (4), and (5), we have the local fractional Fourier

coefficients as follows:

𝑎
0
=

Γ (1 + 𝛼)

(2𝜋)
𝛼 0

𝐼
(𝛼)

2𝜋
𝑓 (𝑥) =

Γ (1 + 𝛼)

(2𝜋)
𝛼 0

𝐼
(𝛼)

2𝜋

𝑡
𝛼

Γ (1 + 𝛼)

=

Γ (1 + 𝛼)

Γ (1 + 2𝛼)

(2𝜋)
𝛼
,

𝑎
𝑘
=

Γ (1 + 𝛼)

𝜋
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𝐼
(𝛼)

2𝜋
𝑓 (𝑥) sin𝛼 (𝑘

𝛼
𝑥
𝛼
)

=

Γ (1 + 𝛼)

𝜋
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𝐼
(𝛼)

2𝜋

𝑡
𝛼

Γ (1 + 𝛼)
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𝛼
(𝑘
𝛼
𝑥
𝛼
)

= − [

1

𝑘
𝛼
[

𝑥
𝛼
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𝛼
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𝛼
𝑥
𝛼
) −

1

𝑘
𝛼
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𝛼
(𝑘
𝛼
𝑥
𝛼
)]]

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2𝜋

0

= −(

2

𝑘

)

𝛼

,

𝑏
𝑘
=

Γ (1 + 𝛼)

𝜋
𝛼 0

𝐼
(𝛼)

2𝜋
𝑓 (𝑥) cos

𝛼
(𝑘
𝛼
𝑥
𝛼
)

=

Γ (1 + 𝛼)

𝜋
𝛼 0

𝐼
(𝛼)

2𝜋

𝑡
𝛼

Γ (1 + 𝛼)

cos
𝛼
(𝑘
𝛼
𝑥
𝛼
)

= [

1

𝑘
𝛼
{

𝑥
𝛼

Γ (1 + 𝛼)

sin
𝛼
(𝑘
𝛼
𝑥
𝛼
)

−

1

𝑘
𝛼
[cos
𝛼
(𝑘
𝛼
𝑥
𝛼
) − 1] }]

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2𝜋

0

= 0.

(18)

Hence, from (18)-(19), 𝑓(𝑡) is expressed as follows:

𝑓 (𝑥) =

Γ (1 + 𝛼)

Γ (1 + 2𝛼)

(2𝜋)
𝛼
−

∞

∑

𝑘=1

(

2

𝑘

)

𝛼

sin
𝛼
(𝑘
𝛼
𝑥
𝛼
) . (19)

Example 2. Let us consider the nondifferentiable data defined
on the Cantor sets in the following form:

𝑓 (𝑡) =

𝑡
2𝛼

Γ (1 + 2𝛼)

, (0 ≤ 𝑡 ≤ 2𝜋) , (20)

where the fractal dimension 𝛼 is equal to ln 2/ ln 3.
According to (3) and (16), we obtain the local fractional

Fourier series as follows:

𝑎
0
=

Γ (1 + 𝛼)

(2𝜋)
𝛼 0

𝐼
(𝛼)

2𝜋
𝑓 (𝑥) =

Γ (1 + 𝛼)

(2𝜋)
𝛼 0

𝐼
(𝛼)

2𝜋

𝑡
2𝛼

Γ (1 + 2𝛼)

=

Γ (1 + 𝛼)

Γ (1 + 3𝛼)

(2𝜋)
2𝛼
.

(21)

From (4) and (10), we have the following local fractional
Fourier series coefficient:

𝑎
𝑘
=

Γ (1 + 𝛼)

𝜋
𝛼 0

𝐼
(𝛼)

2𝜋
𝑓 (𝑥) sin𝛼 (𝑘

𝛼
𝑥
𝛼
)

=

Γ (1 + 𝛼)

𝜋
𝛼 0

𝐼
(𝛼)

2𝜋

𝑡
2𝛼

Γ (1 + 2𝛼)

sin
𝛼
(𝑘
𝛼
𝑥
𝛼
)

=

Γ (1 + 𝛼)

𝜋
𝛼

[−

1

𝑘
𝛼

𝑥
2𝛼

Γ (1 + 2𝛼)

cos
𝛼
(𝑘
𝛼
𝑥
𝛼
) +

1

𝑘
2𝛼

× {

𝑥
𝛼

Γ (1 + 𝛼)

sin
𝛼
(𝑘
𝛼
𝑥
𝛼
)

−

1

𝑘
𝛼
[cos
𝛼
(𝑘
𝛼
𝑥
𝛼
) − 1]}]

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2𝜋

0

= −

Γ (1 + 𝛼)

Γ (1 + 2𝛼)

(

4𝜋

𝑘

)

𝛼

.

(22)

Using (5) and (11), we give

𝑏
𝑘
=

Γ (1 + 𝛼)

𝜋
𝛼 0

𝐼
(𝛼)

2𝜋
𝑓 (𝑥) cos

𝛼
(𝑘
𝛼
𝑥
𝛼
)

=

Γ (1 + 𝛼)

𝜋
𝛼 0

𝐼
(𝛼)

2𝜋

𝑡
2𝛼

Γ (1 + 2𝛼)

cos
𝛼
(𝑘
𝛼
𝑥
𝛼
)

=

Γ (1 + 𝛼)

𝜋
𝛼

[

1

𝑘
𝛼

𝑥
2𝛼

Γ (1 + 2𝛼)

sin
𝛼
(𝑘
𝛼
𝑥
𝛼
) +

1

𝑘
2𝛼

× [

𝑥
𝛼

Γ (1 + 𝛼)

cos
𝛼
(𝑘
𝛼
𝑥
𝛼
)

−

1

𝑘
𝛼
sin
𝛼
(𝑘
𝛼
𝑥
𝛼
)]]

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2𝜋

0

= (

2

𝑘
2
)

𝛼

.

(23)
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Therefore, 𝑓(𝑡) is expressed as follows:

𝑓 (𝑥) =

Γ (1 + 𝛼)

Γ (1 + 3𝛼)

(2𝜋)
2𝛼

−

Γ (1 + 𝛼)

Γ (1 + 2𝛼)

∞

∑

𝑘=1

(

4𝜋

𝑘

)

𝛼

sin
𝛼
(𝑘
𝛼
𝑥
𝛼
)

+

∞

∑

𝑖=1

(

2

𝑘
2
)

𝛼

cos
𝛼
(𝑘
𝛼
𝑥
𝛼
) .

(24)

Example 3. The nondifferentiable data defined on the Cantor
sets in the following form is given by the local fractional
Fourier series as follows:

𝑓 (𝑡) =

𝑡
3𝛼

Γ (1 + 3𝛼)

, (0 ≤ 𝑡 ≤ 2𝜋) , (25)

where the fractal dimension 𝛼 is equal to ln 2/ ln 3.
Making use of (3) and (16), the local fractional Fourier

series of 𝑓(𝑡) reads as follows:

𝑎
0
=

Γ (1 + 𝛼)

(2𝜋)
𝛼 0

𝐼
(𝛼)

2𝜋
𝑓 (𝑥) =

Γ (1 + 𝛼)

(2𝜋)
𝛼 0

𝐼
(𝛼)

2𝜋

𝑡
3𝛼

Γ (1 + 3𝛼)

=

Γ (1 + 𝛼)

Γ (1 + 4𝛼)

(2𝜋)
3𝛼
.

(26)

By applying (4) and (12), we get

𝑎
𝑘
=

Γ (1 + 𝛼)

𝜋
𝛼 0

𝐼
(𝛼)

2𝜋
𝑓 (𝑥) sin

𝛼
(𝑘
𝛼
𝑥
𝛼
)

=

Γ (1 + 𝛼)

𝜋
𝛼 0

𝐼
(𝛼)

2𝜋

𝑡
3𝛼

Γ (1 + 3𝛼)

sin
𝛼
(𝑘
𝛼
𝑥
𝛼
)

=

Γ (1 + 𝛼)

𝜋
𝛼

× [−

1

𝑘
𝛼

𝑥
3𝛼

Γ (1 + 2𝛼)

cos
𝛼
(𝑘
𝛼
𝑥
𝛼
)

+

1

𝑘
2𝛼

𝑥
2𝛼

Γ (1 + 2𝛼)

sin
𝛼
(𝑘
𝛼
𝑥
𝛼
)

+

1

𝑘
3𝛼
(

𝑥
𝛼

Γ (1 + 𝛼)

cos
𝛼
(𝑘
𝛼
𝑥
𝛼
)

−

1

𝑘
𝛼
sin
𝛼
(𝑘
𝛼
𝑥
𝛼
))]

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2𝜋

0

=

1

𝜋
𝛼
((

2𝜋

𝑘
3
)

𝛼

−

Γ (1 + 𝛼)

Γ (1 + 2𝛼)

(

(2𝜋)
3

𝑘

)

𝛼

) .

(27)

By using (5) and (13), we have

𝑏
𝑘
=

Γ (1 + 𝛼)

𝜋
𝛼 0

𝐼
(𝛼)

2𝜋
𝑓 (𝑥) cos𝛼 (𝑘

𝛼
𝑥
𝛼
)

=

Γ (1 + 𝛼)

𝜋
𝛼 0

𝐼
(𝛼)

2𝜋

𝑡
3𝛼

Γ (1 + 3𝛼)

cos
𝛼
(𝑘
𝛼
𝑥
𝛼
)

=

Γ (1 + 𝛼)

𝜋
𝛼

[

1

𝑘
𝛼

𝑥
3𝛼

Γ (1 + 3𝛼)

sin
𝛼
(𝑘
𝛼
𝑥
𝛼
)

−

1

𝑘
2𝛼

𝑥
2𝛼

Γ (1 + 2𝛼)

cos
𝛼
(𝑘
𝛼
𝑥
𝛼
)

+

1

𝑘
3𝛼
{

𝑥
𝛼

Γ (1 + 𝛼)

sin
𝛼
(𝑘
𝛼
𝑥
𝛼
)

−

1

𝑘
𝛼
[cos
𝛼
(𝑘
𝛼
𝑥
𝛼
) − 1] }]

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2𝜋

0

= −

Γ (1 + 𝛼)

Γ (1 + 2𝛼)

(

4𝜋

𝑘
2
)

𝛼

.

(28)

Hence, from (18)–(28), the nondifferentiable signal can be
expressed as follows:

𝑓 (𝑥) =

Γ (1 + 𝛼)

Γ (1 + 4𝛼)

(2𝜋)
3𝛼

+

∞

∑

𝑘=1

1

𝜋
𝛼
((

2𝜋

𝑘
3
)

𝛼

−

Γ (1 + 𝛼)

Γ (1 + 2𝛼)

(

(2𝜋)
3

𝑘

)

𝛼

)

× sin
𝛼
(𝑘
𝛼
𝑥
𝛼
)

−

Γ (1 + 𝛼)

Γ (1 + 2𝛼)

∞

∑

𝑖=1

(

4𝜋

𝑘
2
)

𝛼

cos
𝛼
(𝑘
𝛼
𝑥
𝛼
) .

(29)

Example 4. Let us consider the data defined on Cantor sets

𝑓 (𝑡) =

𝑡
4𝛼

Γ (1 + 4𝛼)

, (0 ≤ 𝑡 ≤ 2𝜋) (30)

to be expressed in local fractional Fourier series.
According to (3) and (16), we have

𝑎
0
=

Γ (1 + 𝛼)

(2𝜋)
𝛼 0

𝐼
(𝛼)

2𝜋
𝑓 (𝑥) =

Γ (1 + 𝛼)

(2𝜋)
𝛼 0

𝐼
(𝛼)

2𝜋

𝑡
4𝛼

Γ (1 + 4𝛼)

=

Γ (1 + 𝛼)

Γ (1 + 5𝛼)

(2𝜋)
4𝛼
.

(31)

From (4) and (14), we arrive at the following local fractional
Fourier series coefficient:

𝑎
𝑘
=

Γ (1 + 𝛼)

𝜋
𝛼 0

𝐼
(𝛼)

2𝜋
𝑓 (𝑥) sin

𝛼
(𝑘
𝛼
𝑥
𝛼
)

=

Γ (1 + 𝛼)

𝜋
𝛼 0

𝐼
(𝛼)

2𝜋

𝑡
4𝛼

Γ (1 + 4𝛼)

sin
𝛼
(𝑘
𝛼
𝑥
𝛼
)



6 Advances in Mathematical Physics

=

Γ (1 + 𝛼)

𝜋
𝛼

[−

1

𝑘
𝛼

𝑥
4𝛼

Γ (1 + 4𝛼)

cos
𝛼
(𝑘
𝛼
𝑥
𝛼
)

+

1

𝑘
2𝛼

𝑥
3𝛼

Γ (1 + 3𝛼)

sin
𝛼
(𝑘
𝛼
𝑥
𝛼
)

−

1

𝑘
3𝛼

𝑥
2𝛼

Γ (1 + 2𝛼)

cos
𝛼
(𝑘
𝛼
𝑥
𝛼
)

+

1

𝑘
4𝛼
{

𝑥
𝛼

Γ (1 + 𝛼)

sin
𝛼
(𝑘
𝛼
𝑥
𝛼
)

−

1

𝑘
𝛼
[cos
𝛼
(𝑘
𝛼
𝑥
𝛼
) − 1] }]

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2𝜋

0

= −

Γ (1 + 𝛼)

𝜋
𝛼

(

(((2𝜋)
4
/𝑘))

𝛼

Γ (1 + 4𝛼)

+

((2𝜋)
2
/𝑘
3
)

𝛼

Γ (1 + 2𝛼)

) .

(32)

Using (5) and (15), we obtain the following local fractional
Fourier series coefficient:

𝑏
𝑘
=

Γ (1 + 𝛼)

𝜋
𝛼 0

𝐼
(𝛼)

2𝜋
𝑓 (𝑥) cos

𝛼
(𝑘
𝛼
𝑥
𝛼
)

=

Γ (1 + 𝛼)

𝜋
𝛼 0

𝐼
(𝛼)

2𝜋

𝑡
4𝛼

Γ (1 + 4𝛼)

cos
𝛼
(𝑘
𝛼
𝑥
𝛼
)

=

Γ (1 + 𝛼)

𝜋
𝛼

[

1

𝑘
𝛼

𝑥
4𝛼

Γ (1 + 4𝛼)

sin
𝛼
(𝑘
𝛼
𝑥
𝛼
)

−

1

𝑘
2𝛼

𝑥
3𝛼

Γ (1 + 3𝛼)

cos
𝛼
(𝑘
𝛼
𝑥
𝛼
)

+

1

𝑘
3𝛼

𝑥
2𝛼

Γ (1 + 2𝛼)

sin
𝛼
(𝑘
𝛼
𝑥
𝛼
)

+

1

𝑘
4𝛼
[

𝑥
𝛼

Γ (1 + 𝛼)

cos
𝛼
(𝑘
𝛼
𝑥
𝛼
)

−

1

𝑘
𝛼
sin
𝛼
(𝑘
𝛼
𝑥
𝛼
)]]

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2𝜋

0

=

Γ (1 + 𝛼)

𝜋
𝛼

(

(2𝜋/𝑘
4
)

𝛼

Γ (1 + 𝛼)

−

((2𝜋)
3
/𝑘
2
)

𝛼

Γ (1 + 3𝛼)

) .

(33)

Hence, we obtain the following local fractional Fourier
coefficient:

𝑓 (𝑥) =

Γ (1 + 𝛼)

Γ (1 + 5𝛼)

(2𝜋)
4𝛼

−

∞

∑

𝑘=1

Γ (1 + 𝛼)

𝜋
𝛼

(

(((2𝜋)
4
/𝑘))

𝛼

Γ (1 + 4𝛼)

+

((2𝜋)
2
/𝑘
3
)

𝛼

Γ (1 + 2𝛼)

)

× sin
𝛼
(𝑘
𝛼
𝑥
𝛼
)

+

∞

∑

𝑖=1

Γ (1 + 𝛼)

𝜋
𝛼

(

(2𝜋/𝑘
4
)

𝛼

Γ (1 + 𝛼)

−

((2𝜋)
3
/𝑘
2
)

𝛼

Γ (1 + 3𝛼)

)

× cos
𝛼
(𝑘
𝛼
𝑥
𝛼
) .

(34)

4. Conclusions

Local fractional Fourier series are a generalization for Fourier
series defined on the Cantor sets based upon the local
fractional calculus. In this work, we use the local fractional
Fourier series to deal with the nondifferentiable data defined
on the Cantor sets. Some explicit computations for nondif-
ferentiable data defined on the Cantor sets are also given to
show the efficiency of the present method.
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[3] R. Metzler, W. G. Glöckle, and T. F. Nonnenmacher, “Fractional
model equation for anomalous diffusion,” Physica A: Statistical
Mechanics and Its Applications, vol. 211, no. 1, pp. 13–24, 1994.

[4] R. Metzler and J. Klafter, “The random walk's guide to anoma-
lous diffusion: a fractional dynamics approach,” Physics Report,
vol. 339, no. 1, pp. 1–77, 2000.

[5] A. S. Kozlov, D. Andor-Ardó, and A. J. Hudspeth, “Anoma-
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[18] E. Dinç and D. Baleanu, “Fractional wavelet transform for the
quantitative spectral resolution of the composite signals of the
active compounds in a two-component mixture,” Computers
andMathematics with Applications, vol. 59, no. 5, pp. 1701–1708,
2010.

[19] R. R. Nigmatullin, J. T. Machado, and R. Menezes, “Self-simi-
larity principle: the reduced description of randomness,” Cen-
tral European Journal of Physics, vol. 11, no. 6, pp. 724–739, 2013.

[20] R. R. Nigmatullin, S. I. Osokin, and V. A. Toboev, “NAFASS:
discrete spectroscopy of random signals,” Chaos, Solitons and
Fractals, vol. 44, no. 4-5, pp. 226–240, 2011.

[21] D. Baleanu, R. Nigmatullin, O. Suleyman, and S. Cetin, “Appli-
cation of the Prony’s method to analysis of the FTIR data,”
Fractional Differentiation and Its Applications, vol. 6, no. 1, pp.
581–586, 2013.

[22] D. Baleanu and X. J. Yang, “Local fractional Fourier series with
applications to representations of fractal signals,” in Proceedings
of the ASME/IEEEMESA Conference, Portland, Ore, USA, 2013.

[23] X. J. Yang, D. Baleanu, and J. T. Machado, “Application of the
local fractional Fourier series to fractal signals,” in Proceedings
of the Discontinuity and Complexity in Nonlinear Physical Sys-
tems, J. A. TenreiroMachado, D. Baleanu, and A. C. J. Luo, Eds.,
Springer, 2014.

[24] Y.-J. Yang, D. Baleanu, and X.-J. Yang, “Analysis of fractal wave
equations by local fractional Fourier series method,” Advances
in Mathematical Physics, vol. 2013, Article ID 632309, 6 pages,
2013.

[25] Y. Zhao, D. Baleanu, M. Baleanu, D. F. Cheng, and X. J. Yang,
“Mappings for special functions on Cantor sets and special
integral transforms via local fractional operators,” Abstract and
Applied Analysis, vol. 2013, Article ID 316978, 6 pages, 2013.

[26] M.-S. Hu, R. P. Agarwal, and X.-J. Yang, “Local fractional
Fourier series with application to wave equation in fractal vib-
rating string,” Abstract and Applied Analysis, vol. 2012, Article
ID 567401, 15 pages, 2012.

[27] Y. Zhang, A. Yang, and X. J. Yang, “1-D heat conduction in a
fractal medium A solution by the local fractional Fourier series
method,”Thermal Science, vol. 17, no. 3, pp. 953–956, 2013.

[28] X.-J. Yang, D. Baleanu, H. M. Srivastava, and J. A. Tenreiro
Machado, “On local fractional continuous wavelet transform,”
Abstract and Applied Analysis, vol. 2013, Article ID 725416, 5
pages, 2013.

[29] Y. Zhao, D. Baleanu, C. Cattani, D.-F. Cheng, and X.-J. Yang,
“Local fractional discrete wavelet transform for solving signals
on Cantor sets,” Mathematical Problems in Engineering, vol.
2013, Article ID 560932, 6 pages, 2013.

[30] X. J. Yang, Advanced Local Fractional Calculus and Its Applica-
tions, World Science, New York, NY, USA, 2012.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


