28 research outputs found

    Zanthoxylum ailanthoides

    Get PDF
    Zanthoxylum ailanthoides (ZA) has been used as folk medicines in East Asian and recently reported to have several bioactivity; however, the studies of ZA on the regulation of triacylglycerol (TG) biosynthesis have not been elucidated yet. In this study, we examined whether the methanol extract of ZA (ZA-M) could reduce oleic acid- (OA-) induced intracellular lipid accumulation and confirmed its mode of action in HepG2 cells. ZA-M was shown to promote the phosphorylation of AMPK and its upstream LKB1, followed by reduction of lipogenic gene expressions. As a result, treatment of ZA-M blocked de novo TG biosynthesis and subsequently mitigated intracellular neutral lipid accumulation in HepG2 cells. ZA-M also inhibited OA-induced production of reactive oxygen species (ROS) and TNF-α, suggesting that ZA-M possess the anti-inflammatory feature in fatty acid over accumulated condition. Taken together, these results suggest that ZA-M attenuates OA-induced lipid accumulation and inflammation through the activation of LKB1/AMPK signaling pathway in HepG2 cells

    Imperceptible Flicker Noise Reduction Using Pseudo-Flicker Weight Functionalized Derivative Equalization in Light-Fidelity Transmission Link

    No full text
    A new technique to reduce flicker noise generated in light-fidelity (Li-Fi) transmission links based on the white light-emitting diode (LED) is proposed. Here, flicker noise with a frequency of 120 Hz, which is twice the frequency of AC power (60 Hz), is generated. The proposed technique is implemented in the receiver of the Li-Fi link. It can reduce flicker noise regardless of various digital modulation formats. In addition, there is no need to change the structure of the electrical circuit driving the LED to reduce the flicker noise. As a result, the non-return to-zero-on-off-keying (NRZ–OOK) signal waveform is tilted according to the flicker noise waveform. We implement the derivative equalization with a pseudo-flicker weight function to reduce the flicker noise. The derivative value of the NRZ–OOK signal mixed with flicker noise becomes larger than that without the flicker noise. In the proposed technique, the derivative value between adjacent sampling points is suppressed below the preset thresholds when it is greater than the preset threshold. Furthermore, a pseudo-flicker weight function is applied to accelerate the flicker noise reduction. As a result, using the proposed technique, a 2 dB signal-to-noise ratio (SNR) gain is obtained based on the bit error rate (BER) threshold (3.5 × 10−5) corresponding to 10% flicker modulation, which is known to have no serious effect on human health. This means that it is possible to implement a Li-Fi transmission link based on an illumination environment with a flicker modulation reduced from 10% to 7%

    Ambient LED Light Noise Reduction Using Adaptive Differential Equalization in Li-Fi Wireless Link

    No full text
    For Li-Fi wireless links based on a white light emitting diode, an adaptive differential equalization (ADE) technique that reduces various noises such as interference noise and shot one generated from ambient light sources is pro-posed. The ADE technique reduces noise by taking advantage of the fact that the derivative between adjacent sampling points of signal with digital waveform is very different from that of noise with the random analog waveform. Furthermore, a weighting function that reflects the Poisson characteristics of shot noise is applied to the ADE technique in order to maximize the reduction efficiency of ambient noise. The signal-to-noise ratio of input non-return-to-zero-on–off keying (NRZ-OOK) signal is improved by 7.5 dB at the first-generation forward error correction (FEC) threshold (the bit error rate (BER) of 8 × 10−5) using the optical wireless experimental link. In addition, it is confirmed that it is possible to maintain the transmission performance corresponding to the BER of 1 × 10−5 by using the proposed ADE technique, even when the intensity of the ambient light source increases by 6 dB

    Ambient LED Light Noise Reduction Using Adaptive Differential Equalization in Li-Fi Wireless Link

    No full text
    For Li-Fi wireless links based on a white light emitting diode, an adaptive differential equalization (ADE) technique that reduces various noises such as interference noise and shot one generated from ambient light sources is pro-posed. The ADE technique reduces noise by taking advantage of the fact that the derivative between adjacent sampling points of signal with digital waveform is very different from that of noise with the random analog waveform. Furthermore, a weighting function that reflects the Poisson characteristics of shot noise is applied to the ADE technique in order to maximize the reduction efficiency of ambient noise. The signal-to-noise ratio of input non-return-to-zero-on–off keying (NRZ-OOK) signal is improved by 7.5 dB at the first-generation forward error correction (FEC) threshold (the bit error rate (BER) of 8 × 10−5) using the optical wireless experimental link. In addition, it is confirmed that it is possible to maintain the transmission performance corresponding to the BER of 1 × 10−5 by using the proposed ADE technique, even when the intensity of the ambient light source increases by 6 dB

    Growth dynamics of solid electrolyte interphase layer on SnO2 nanotubes realized by graphene liquid cell electron microscopy

    No full text
    Formation of stable solid electrolyte interphase (SEI) layer is critical to outstanding performance of energy storage devices, because it acts as a passive layer that allows facile transport of ions but forbids electron transport between the electrolyte and electrode. Although much study has been devoted to investigate the morphology and structure of SEI layer using a myriad of analytical devices on past decades, the direct observation of SEI layer on a real time scale has remained as a formidable challenge. In addition, it has been difficult to observe both the decomposition of electrolytes and formation process of stable SEI layer at nanometer scale. Here we utilize in situ transmission electron microscopy (TEM) using graphene liquid cell (GLC) to realize the observation of stable SEI layer formation in a sequential time scale. Upon e- beam irradiation, Li salts in the electrolytes react with reduced electrolytes and form gel-like agglomerates, which are deposited on the surface of the active material as a passivation layer and later stabilized to become more uniform in overall thickness. Additionally, growth dynamics of stable SEI layer were suggested, where the deposition of decomposed electrolytes eventually result in relatively uniform SEI layer. This paper demonstrates that it is possible to observe not only the formation of non-crystalline SEI layer but also the movement of decomposed electrolytes onto the surface of active materials which account for broader understanding of SEI layer, and has the potential to detect important interfacial phenomena in electrochemical devices that were overlooked so far. © 2016 Elsevier Ltd.114171sciescopu

    Direct Fabrication of Zero- and One-Dimensional Metal Nanocrystals by Thermally Assisted Electromigration

    No full text
    Zero-and one-dimensional metal nanocrystals were successfully fabricated with accurate control in size, shape, and position on semiconductor surfaces by using a novel in situ fabrication method of the nanocrystal with a biasing tungsten tip in transmission electron microscopy. The dominant mechanism of nanocrystal formation was identified mainly as local Joule heating-assisted electromigration through the direct observation of formation and growth processes of the nanocrystal. This method was applied to extracting metal atoms with an exceedingly faster growth rate (???105 atoms/s) from a metal-oxide thin film to form a metal nanocrystal with any desired size and position. By real-time observation of the microstructure and concurrent electrical measurements, it was found that the nanostructure formation can be completely controlled into various shapes such as zero-dimensional nanodots and one-dimensional nanowires/nanorods.close5

    In Situ High-Resolution Transmission Electron Microscopy (TEM) Observation of Sn Nanoparticles on SnO2 Nanotubes under Lithiation

    No full text
    We trace Sn nanoparticles (NPs) produced from SnO2 nanotubes (NTs) during lithiation initialized by high energy e-beam irradiation. The growth dynamics of Sn NPs is visualized in liquid electrolytes by graphene liquid cell transmission electron microscopy. The observation reveals that Sn NPs grow on the surface of SnO2 NTs via coalescence and the final shape of agglomerated NPs is governed by surface energy of the Sn NPs and the interfacial energy between Sn NPs and SnO2 NTs. Our result will likely benefit more rational material design of the ideal interface for facile ion insertion. © Microscopy Society of America 2017101sciescopu
    corecore