175 research outputs found

    Changes in activity and isozyme patterns of peroxidase and chitinase in kiwifruit pollen

    Get PDF
    In this study, changes in activity and isozyme patterns of peroxidase (POD) and chitinase in kiwifruit (Actinidia chinensis) pollen were investigated under different storage conditions. Although residual activity was detected in heat-treated pollen, changes in POD activity were observed due to difference in storage conditions as revealed by preliminary studies in which pollen germination varied with different storage conditions. POD activity of kiwifruit pollen increased as proportions of viable pollen increased, indicating a positive correlation (R2=0.993) between pollen viability and POD activity. There was a detectable difference in the relative activity of POD enzyme between heat-treated and viable pollen. Decoloration of Congo Red was observed in germination medium which fresh pollen was cultured. The activity of individual chitinase isozymes present in kiwifruit pollen differed depending on storage conditions, which had a direct impact on pollen vigor. Although direct evidence showing that chitinase isozymes are implicated in pollen vigor is still uncertain, distinction of isozymes may facilitate more precise identification of viable pollen which possesses germination potential from non-viable pollen. Taken together, these results suggest that monitoring the activity of POD and chitinase can be an attractive alternative to evaluate pollen vigor in kiwifruit

    Dissociation of pulse wave velocity and aortic wall stiffness in diabetic db/db mice: The influence of blood pressure.

    Get PDF
    Introduction: Vascular stiffness is a predictor of cardiovascular disease and pulse wave velocity (PWV) is the current standard for measuring in vivo vascular stiffness. Mean arterial pressure is the largest confounding variable to PWV; therefore, in this study we aimed to test the hypothesis that increased aortic PWV in type 2 diabetic mice is driven by increased blood pressure rather than vascular biomechanics. Methods and Results: Using a combination of in vivo PWV and ex vivo pressure myography, our data demonstrate no difference in ex vivo passive mechanics, including outer diameter, inner diameter, compliance (Db/db: 0.0094 Β± 0.0018 mm2/mmHg vs. db/db: 0.0080 Β± 0.0008 mm2/mmHg, p \u3e 0.05 at 100 mmHg), and incremental modulus (Db/db: 801.52 Β± 135.87 kPa vs. db/db: 838.12 Β± 44.90 kPa, p \u3e 0.05 at 100 mmHg), in normal versus diabetic 16 week old mice. We further report no difference in basal or active aorta biomechanics in normal versus diabetic 16 week old mice. Finally, we show here that the increase in diabetic in vivo aortic pulse wave velocity at baseline was completely abolished when measured at equivalent pharmacologically-modulated blood pressures, indicating that the elevated PWV was attributed to the concomitant increase in blood pressure at baseline, and therefore stiffness. Conclusions: Together, these animal model data suggest an intimate regulation of blood pressure during collection of pulse wave velocity when determining in vivo vascular stiffness. These data further indicate caution should be exerted when interpreting elevated PWV as the pure marker of vascular stiffness

    Transcatheter Arterial Embolization as Treatment for a Life-Threatening Retroperitoneal Hemorrhage Complicating Heparin Therapy

    Get PDF
    Spontaneous retroperitoneal hemorrhage is a distinct clinical entity that can present in the absence of specific underlying pathology or trauma and is typically associated with anticoagulation therapy. We report a case of a 74-year-old female patient with a cerebral infarction related to atrial fibrillation who developed a spontaneous lumbar arterial hemorrhage complicating heparin therapy. The diagnosis was suggested by a computed tomography scan and confirmed by angiography. She was treated successfully with transcatheter embolization

    Electrically Robust Single-Crystalline WTe2 Nanobelts for Nanoscale Electrical Interconnects

    Get PDF
    As the elements of integrated circuits are downsized to the nanoscale, the current Cu-based interconnects are facing limitations due to increased resistivity and decreased current-carrying capacity because of scaling. Here, the bottom-up synthesis of single-crystalline WTe2 nanobelts and low- and high-field electrical characterization of nanoscale interconnect test structures in various ambient conditions are reported. Unlike exfoliated flakes obtained by the top-down approach, the bottom-up growth mode of WTe2 nanobelts allows systemic characterization of the electrical properties of WTe2 single crystals as a function of channel dimensions. Using a 1D heat transport model and a power law, it is determined that the breakdown of WTe2 devices under vacuum and with AlOx capping layer follows an ideal pattern for Joule heating, far from edge scattering. High-field electrical measurements and self-heating modeling demonstrate that the WTe2 nanobelts have a breakdown current density approaching approximate to 100 MA cm(-2), remarkably higher than those of conventional metals and other transition-metal chalcogenides, and sustain the highest electrical power per channel length (approximate to 16.4 W cm(-1)) among the interconnect candidates. The results suggest superior robustness of WTe2 against high-bias sweep and its possible applicability in future nanoelectronics

    Role of Amphipathic Helix of a Herpesviral Protein in Membrane Deformation and T Cell Receptor Downregulation

    Get PDF
    Lipid rafts are membrane microdomains that function as platforms for signal transduction and membrane trafficking. Tyrosine kinase interacting protein (Tip) of T lymphotropic Herpesvirus saimiri (HVS) is targeted to lipid rafts in T cells and downregulates TCR and CD4 surface expression. Here, we report that the membrane-proximal amphipathic helix preceding Tip's transmembrane (TM) domain mediates lipid raft localization and membrane deformation. In turn, this motif directs Tip's lysosomal trafficking and selective TCR downregulation. The amphipathic helix binds to the negatively charged lipids and induces liposome tubulation, the TM domain mediates oligomerization, and cooperation of the membrane-proximal helix with the TM domain is sufficient for localization to lipid rafts and lysosomal compartments, especially the mutivesicular bodies. These findings suggest that the membrane-proximal amphipathic helix and TM domain provide HVS Tip with the unique ability to deform the cellular membranes in lipid rafts and to downregulate TCRs potentially through MVB formation

    Oncologic outcomes after immediate breast reconstruction following mastectomy: comparison of implant and flap using propensity score matching

    Get PDF
    Although immediate breast reconstruction has been reported to be oncologically safe, no affirmative study comparing the two reconstruction methods exists. We investigated breast cancer recurrence rates in two breast reconstruction types; implant reconstruction and autologous flap reconstruction. A retrospective cohort study was performed on propensity score-matched (for age, stage, estrogen receptor status) patients who underwent IBR after mastectomy at Seoul National University Hospital between 2010 and 2014. The main outcomes determined were locoregional recurrence-free interval (LRRFI) and disease-free interval (DFI). We analyzed 496 patients among 731 patients following propensity score matching (Median age 43, 247 implant reconstruction and 249 flap reconstruction). During median follow-up of 58.2 months, DFI was not different between the two groups at each tumor stage. However, flap reconstruction showed inferior DFI compared to implant reconstruction in patients with high histologic grade (p = 0.012), and with high Ki-67 (p = 0.028). Flap reconstruction was related to short DFI in multivariate analysis in aggressive tumor subsets. Short DFI after flap reconstruction in aggressive tumor cell phenotype was most evident in hormone positive/Her-2 negative cancer (p = 0.008). LRRFI, on the other hand, did not show difference according to reconstruction method regardless of tumor cell aggressiveness. Although there is no difference in cancer recurrence according to reconstruction method in general, flap-based reconstruction showed higher systemic recurrence associated with histologically aggressive tumors

    Haloperidol regulates the phosphorylation level of the MEK-ERK-p90RSK signal pathway via protein phosphatase 2A in the rat frontal cortex

    Get PDF
    Haloperidol, a classical antipsychotic drug, affects the extracellular signal-regulated kinase (ERK) pathway in the brain. However, findings are inconsistent and the mechanism by which haloperidol regulates ERK is poorly understood. Therefore, we examined the ERK pathway and the related protein phosphatase 2A (PP2A) in detail after haloperidol administration. Haloperidol (0.5 and 1 mg/kg) induced biphasic changes in the phosphorylation level of mitogen-activated protein kinase kinase (MEK), ERK, and p90 ribosomal S6 kinase (p90RSK) without changing Raf-1 phosphorylation. Fifteen minutes after haloperidol administration, MEK-ERK-p90RSK phosphorylation increased, whilst PP2A activity decreased. At 60 min, the reverse was observed and the binding of PP2A to MEK and ERK increased. Higher dosages of haloperidol (2 and 4 mg/kg), affected neither MEK-ERK-p90RSK phosphorylation nor PP2A activity. Accordingly, PP2A regulates acute dose- and time-dependent changes in MEK-ERK-p90RSK phosphorylation after haloperidol treatment. These findings suggest the involvement of a dephosphorylating mechanism in the acute action of haloperidol

    Impact of multivessel versus single-vessel disease on the association between low diastolic blood pressure and mortality after acute myocardial infarction with revascularization

    Get PDF
    Background: Previous studies demonstrated a J-shaped relationship between low diastolic blood pressure (DBP) and adverse clinical outcomes in patients with acute myocardial infarction (AMI) that was sensitive to revascularization. Hypothesized herein, was that this relationship differs between patients with multivessel disease (MVD) and those with single-vessel disease due to differing degrees of myocardial ischemic burden. Methods: Among 9,983 AMI patients from the Korea Acute Myocardial Infarction Registry database who underwent percutaneous coronary intervention and were followed up for a median duration of 3.2 years, average on-treatment DBP was calculated at admission, discharge, and every scheduled visit and divided into these parameters: < 70 mmHg, 70–74 mmHg, 75–79 mmHg, and β‰₯ 80 mmHg. The relationship between average on-treatment DBP and clinical outcomes including all-cause death, cardiovascular (CV) death, non-CV death, and hospitalization for heart failure was analyzed using the Cox regression models adjusted for clinical covariates. Results: In patients with MVD, all-cause death (hazard ratio [HR]: 1.47; 95% confidence interval [CI]: 1.06–2.04, p = 0.012) and CV death (HR: 1.59; 95% CI: 1.02–2.46, p = 0.027) were significantly increased in patients with a DBP < 70 mmHg, showing a J-shaped relationship. However, these findings were not significant for single-vessel disease. On a sensitivity analysis excluding subjects with a baseline SBP < 120 mmHg, an increased risk of a low DBP < 70 mmHg remained in MVD. Conclusions: The J-shaped relationship between low DBP and adverse clinical outcomes in AMI patients who underwent revascularization persisted in MVD, which has a high ischemic burden. These high-risk patients require cautious treatment
    • …
    corecore