6,478 research outputs found

    The full repertoire of Drosophila gustatory receptors for detecting an aversive compound.

    Get PDF
    The ability to detect toxic compounds in foods is essential for animal survival. However, the minimal subunit composition of gustatory receptors required for sensing aversive chemicals in Drosophila is unknown. Here we report that three gustatory receptors, GR8a, GR66a and GR98b function together in the detection of L-canavanine, a plant-derived insecticide. Ectopic co-expression of Gr8a and Gr98b in Gr66a-expressing, bitter-sensing gustatory receptor neurons (GRNs) confers responsiveness to L-canavanine. Furthermore, misexpression of all three Grs enables salt- or sweet-sensing GRNs to respond to L-canavanine. Introduction of these Grs in sweet-sensing GRNs switches L-canavanine from an aversive to an attractive compound. Co-expression of GR8a, GR66a and GR98b in Drosophila S2 cells induces an L-canavanine-activated nonselective cation conductance. We conclude that three GRs collaborate to produce a functional L-canavanine receptor. Thus, our results clarify the full set of GRs underlying the detection of a toxic tastant that drives avoidance behaviour in an insect

    A Study on Simulation of Flood Inundation in a Coastal Urban Area Using a Two-Dimensional Numerical Model

    Get PDF
    Source: ICHE Conference Archive - https://mdi-de.baw.de/icheArchiv

    Superconducting detectors for rare event searches in experimental astroparticle physics

    Full text link
    Superconducting detectors have become an important tool in experimental astroparticle physics, which seeks to provide a fundamental understanding of the Universe. In particular, such detectors have demonstrated excellent potential in two challenging research areas involving rare event search experiments, namely, the direct detection of dark matter and the search for neutrinoless double beta decay. Here, we review the superconducting detectors that have been and are planned to be used in these two categories of experiments. We first provide brief histories of the two research areas and outline their significance and challenges in astroparticle physics. Then, we present an extensive overview of various types of superconducting detectors with a focus on sensor technologies and detector physics, which are based on calorimetric measurements and heat flow in the detector components. Finally, we introduce leading experiments and discuss their future prospects for the detection of dark matter and the search for neutrinoless double beta decay employing superconducting detectors
    corecore