344 research outputs found
A study on measurements of local ice pressure for ice breaking research vessel “ARAON” at the Amundsen Sea
ABSTRACT:In this study, a local ice pressure prediction has been conducted by using measured data from two ice breaking tests that was conducted for a relatively big ice floe at Amundsen Sea in the Antarctica from January 31 to March 30 2012. The symmetry of load was considered by attaching strain gauges on the same sites inside the shell plating of ship at the port and the starboard sides in the bow thrust room. Using measured strain data, after the ice pressure was converted by the influence coefficient method and the direct method, the two values were found to be similar
Automatic Internal Stray Light Calibration of AMCW Coaxial Scanning LiDAR Using GMM and PSO
In this paper, an automatic calibration algorithm is proposed to reduce the
depth error caused by internal stray light in amplitude-modulated continuous
wave (AMCW) coaxial scanning light detection and ranging (LiDAR). Assuming that
the internal stray light generated in the process of emitting laser is static,
the amplitude and phase delay of internal stray light are estimated using the
Gaussian mixture model (GMM) and particle swarm optimization (PSO).
Specifically, the pixel positions in a raw signal amplitude map of calibration
checkboard are segmented by GMM with two clusters considering the dark and
bright image pattern. The loss function is then defined as L1-norm of
difference between mean depths of two amplitude-segmented clusters. To avoid
overfitting at a specific distance in PSO process, the calibration check board
is actually measured at multiple distances and the average of corresponding L1
loss functions is chosen as the actual loss. Such loss is minimized by PSO to
find the two optimal target parameters: the amplitude and phase delay of
internal stray light. According to the validation of the proposed algorithm,
the original loss is reduced from tens of centimeters to 3.2 mm when the
measured distances of the calibration checkboard are between 1 m and 4 m. This
accurate calibration performance is also maintained in geometrically complex
measured scene. The proposed internal stray light calibration algorithm in this
paper can be used for any type of AMCW coaxial scanning LiDAR regardless of its
optical characteristics
Highly precise AMCW time-of-flight scanning sensor based on digital-parallel demodulation
In this paper, a novel amplitude-modulated continuous wave (AMCW)
time-of-flight (ToF) scanning sensor based on digital-parallel demodulation is
proposed and demonstrated in the aspect of distance measurement precision.
Since digital-parallel demodulation utilizes a high-amplitude demodulation
signal with zero-offset, the proposed sensor platform can maintain extremely
high demodulation contrast. Meanwhile, as all cross correlated samples are
calculated in parallel and in extremely short integration time, the proposed
sensor platform can utilize a 2D laser scanning structure with a single photo
detector, maintaining a moderate frame rate. This optical structure can
increase the received optical SNR and remove the crosstalk of image pixel
array. Based on these measurement properties, the proposed AMCW ToF scanning
sensor shows highly precise 3D depth measurement performance. In this study,
this precise measurement performance is explained in detail. Additionally, the
actual measurement performance of the proposed sensor platform is
experimentally validated under various conditions
Dual Fistulas of Ascending Aorta and Coronary Artery to Pulmonary Artery
Coronary artery fistula to pulmonary artery is common. However, to the best of our knowledge, a case of coronary artery fistula to pulmonary artery associated with aortopulmonary fistula remains unreported. We herein report a 64-year-old female with a left anterior descending coronary artery and ascending aorta to pulmonary artery fistulas, and conduct a brief review of the literature
Development and evaluation of a plant-based air filter system for bacterial growth control
We investigated a novel plant-based air filter system for bacterial growth control. The volatile components released from the experimental plant (Cupressus macrocarpa) were used as the basis of the bacterial growth control and inhibition. We monitored the effect of light on the gas exhausted from the system, and we found that the presence of light induced an increase in the O2 concentration and a decrease in the CO2 concentration in the exhaust gas. A variety of Gram-positive and -negative bacteria was used to elucidate the effect of the exhaust gas on bacterial growth. In the Bacillus subtilis cultivation aerated with the exhaust gas (batch mode), we observed a decrease in the specific growth rate (μ = 0.227 h-1) compared with the control experiments (0.257 h-1). The same result was observed for the Staphylococcus aureus cultivation aerated with the exhaust gas. In the case of Gram-negative bacterial cultivation aerated with the gas, no significant inhibitory effect of the exhaust gas on the bacterial growth was observed. When the number of bacteria (B. subtilis) in a continuous culture was varied at different aeration rates (between 50 to 200 mL/min) using the exhaust gas, a prominent inhibitory effect was observed. Preliminary gas analysis showed that the major inhibitory factors in the exhaust gas are α- and β-pinene and linalool. The results show that the air filter system used in this study could be applied not only as a methodological aspect for estimating antibacterial activity but also for bacteria control in a given system.Keywords: Plant-based biofilter, Cupressus macrocarpa, Bacillus subtilis, Staphylococcus aureus, α-pinene, β-pineneAfrican Journal of Biotechnology Vol. 12(16), pp. 2027-203
Influence of anesthesia methods on surgical outcomes and renal function in retrograde intrarenal stone surgery: a prospective, randomized controlled study
Background
We analyzed the influence of anesthesia methods on surgical outcomes and renal function in retrograde intrarenal surgery (RIRS) in a prospective, randomized controlled study.
Methods
Seventy patients who underwent RIRS from September 2015 to February 2017 were randomly allocated to general anesthesia (GA) or spinal anesthesia (SA) groups. Renal function was assessed using estimated glomerular filtration rate, and separate renal function was evaluated using nuclear medicine tests. Maneuverability and accessibility were evaluated after every surgery. All procedures were performed by a single experienced surgeon (SY Cho).
Results
Stone-free rate was higher in the GA (92.3%, 36 of 39) than the SA (71.0%, 22 of 31) (P = 0.019) group. Pain score was higher in the GA than in the SA group on the first postoperative morning (P = 0.025), but pain scores of the two groups were similar before discharge (P = 0.560). There were no differences in the changes of serum creatinine level (P = 0.792) and changes of estimated glomerular filtration rate (P = 0.807). Differences of separate renal function between operative and contralateral site increased significantly in patients under GA than under SA at postoperative 3 months (P = 0.014). Maneuverability and accessibility were better in SA with sedation than GA (P < 0.001).
Conclusions
RIRS under SA showed advantages in renal function change using renogram at postoperative 3 months and in lower pain score on the first postoperative morning. Performance of operator under SA was worse than that under GA and significantly improved with sedation. RIRS under SA showed advantages in lower pain score at postoperative first day.
Trial registration
Clinicaltrials.gov ID is NCT03957109, and registration date is 17th May 2019. This study was retrospectively registered.This study was supported by grant no. 04–2015-0680 from the SNUH Research Fund
Lung function, coronary artery calcification, and metabolic syndrome in 4905 Korean males
SummaryBackgroundImpaired lung function is an independent predictor of cardiovascular mortality. We assessed the relationships of lung function with insulin resistance (IR), metabolic syndrome (MetS), systemic inflammation and coronary artery calcification score (CACS) measured by computed tomography (CT) scan an indicator of coronary atherosclerosis.MethodsWe identified 4905 adult male patients of the Health Promotion Center in Samsung Medical Center between March 2005 and February 2008 and retrospectively reviewed the following data for these patients: pulmonary function, CT-measured CACS, anthropometric measurement, fasting glucose, insulin, lipid profiles, serum C-reactive protein (CRP) and homeostatic model assessment (HOMA-IR). MetS was defined according to the AHA/NHLBI criteria.ResultsWhen the subjects were divided into four groups according to quartiles of FVC or FEV1 (% pred), serum CRP level, HOMA-IR, prevalence of MetS and CACS significantly increased as the FVC or FEV1 (% pred) decreased. The odds ratios (ORs) for MetS in the lowest quartiles of FVC and FEV1 (% pred) were 1.85 (95% CI, 1.49–2.30; p<0.001) and 1.47 (95% CI, 1.20–1.81; p<0.001) respectively. The ORs for the presence of coronary artery calcification in the lowest quartiles of FVC and FEV1 (% pred) were 1.31 (95% CI, 1.09–1.58; p=0.004) and 1.22 (95% CI, 1.02–1.46; p=0.029) respectively. Obesity, CRP, HOMA-IR, and the presence of coronary artery calcium were independent risk predictors for impaired lung function.ConclusionMetabolic syndrome, insulin resistance, coronary atherosclerosis, and systemic inflammation are closely related to the impaired lung function
Microstructural, Electrical and Mechanical Properties of the Al-Zn-Mg-Mn Alloy with Strontium Addition
This study investigated the improvement in the electrical conductivity and mechanical properties obtained by adjusting the amount of the Sr addition to the Al-Zn-Mg-Mn alloy. The addition of Sr formed an intermetallic compounds, and the volume fraction of the intermetallic compounds increased with increasing Sr content. As the amount of Sr added increased from 0 to 1.0 wt%, the electrical conductivity of the extruded alloy decreased to 48.9, 45.2 and 42.5% IACS. As the addition amount of Sr increased, the average grain size of the rolled alloy decreased to 55.5, 53.1 and 42.3 μm. And, the ultimate tensile strength increased to 195, 212 and 216 MPa
- …