617 research outputs found

    Optimum Water Quality Monitoring Network Design for Bidirectional River Systems

    Get PDF
    Affected by regular tides, bidirectional water flows play a crucial role in surface river systems. Using optimization theory to design a water quality monitoring network can reduce the redundant monitoring nodes as well as save the costs for building and running a monitoring network. A novel algorithm is proposed to design an optimum water quality monitoring network for tidal rivers with bidirectional water flows. Two optimization objectives of minimum pollution detection time and maximum pollution detection probability are used in our optimization algorithm. We modify the Multi-Objective Particle Swarm Optimization (MOPSO) algorithm and develop new fitness functions to calculate pollution detection time and pollution detection probability in a discrete manner. In addition, the Storm Water Management Model (SWMM) is used to simulate hydraulic characteristics and pollution events based on a hypothetical river system studied in the literature. Experimental results show that our algorithm can obtain a better Pareto frontier. The influence of bidirectional water flows to the network design is also identified, which has not been studied in the literature. Besides that, we also find that the probability of bidirectional water flows has no effect on the optimum monitoring network design but slightly changes the mean pollution detection time

    Designing an Optimized Water Quality Monitoring Network with Reserved Monitoring Locations

    Get PDF
    The optimized design of water quality monitoring networks can not only minimize the pollution detection time and maximize the detection probability for river systems but also reduce redundant monitoring locations. In addition, it can save investments and costs for building and operating monitoring systems as well as satisfy management requirements. This paper aims to use the beneficial features of multi-objective discrete particle swarm optimization (MODPSO) to optimize the design of water quality monitoring networks. Four optimization objectives: minimum pollution detection time, maximum pollution detection probability, maximum centrality of monitoring locations and reservation of particular monitoring locations, are proposed. To guide the convergence process and keep reserved monitoring locations in the Pareto frontier, we use a binary matrix to denote reserved monitoring locations and develop a new particle initialization procedure as well as discrete functions for updating particle’s velocity and position. The storm water management model (SWMM) is used to model a hypothetical river network which was studied in the literature for comparative analysis of our work. We define three pollution detection thresholds and simulate pollution events respectively to obtain all the pollution detection time for all the potential monitoring locations when a pollution event occurs randomly at any potential monitoring locations. Compared to the results of an enumeration search method, we confirm that our algorithm could obtain the Pareto frontier of optimized monitoring network design, and the reserved monitoring locations are included to satisfy the management requirements. This paper makes fundamental advancements of MODPSO and enables it to optimize the design of water quality monitoring networks with reserved monitoring locations

    Designing an Optimal Water Quality Monitoring Network

    Get PDF
    Part 6: Intelligent ApplicationsInternational audienceThe optimal design of water quality monitoring network can improve the monitoring performance. In addition, it can reduce the redundant monitoring locations and save the investment and costs for building and operating the monitoring system. This paper modifies the original Multi-Objective Particle Swarm Optimization (MOPSO) to optimize the design of water quality monitoring network based on three optimization objectives: minimum pollution detection time, maximum pollution detection probability and maximum centrality of monitoring locations. We develop a new initialization procedure as well as a discrete velocity and position updating function to optimize the design of water quality monitoring network. The Storm Water Management Model (SWMM) is used to model a hypothetical river network which was studied in the literature for comparative analysis of our work. We simulate pollution events in SWMM to obtain all the pollution detection time for all the potential monitoring locations. Experimental results show that the modified MOPSO can obtain steady Pareto frontiers and better optimal deployment solutions than genetic algorithm (GA)

    The Classical Harmonic Vibrations of the Atomic Centers of Mass with Micro Amplitudes and Low Frequencies Monitored by the Entanglement between the Two Two-level Atoms in a Single mode Cavity

    Full text link
    We study the entanglement dynamics of the two two-level atoms coupling with a single-mode polarized cavity field after incorporating the atomic centers of mass classical harmonic vibrations with micro amplitudes and low frequencies. We propose a quantitative vibrant factor to modify the concurrence of the two atoms states. When the vibrant frequencies are very low, we obtain that: (i) the factor depends on the relative vibrant displacements and the initial phases rather than the absolute amplitudes, and reduces the concurrence to three orders of magnitude; (ii) the concurrence increases with the increase of the initial phases; (iii) the frequency of the harmonic vibration can be obtained by measuring the maximal value of the concurrence during a small time. These results indicate that even the extremely weak classical harmonic vibrations can be monitored by the entanglement of quantum states.Comment: 10 pages, 3 figure

    Cytoplasmic p53 couples oncogene-driven glucose metabolism to apoptosis and is a therapeutic target in glioblastoma.

    Get PDF
    Cross-talk among oncogenic signaling and metabolic pathways may create opportunities for new therapeutic strategies in cancer. Here we show that although acute inhibition of EGFR-driven glucose metabolism induces only minimal cell death, it lowers the apoptotic threshold in a subset of patient-derived glioblastoma (GBM) cells. Mechanistic studies revealed that after attenuated glucose consumption, Bcl-xL blocks cytoplasmic p53 from triggering intrinsic apoptosis. Consequently, targeting of EGFR-driven glucose metabolism in combination with pharmacological stabilization of p53 with the brain-penetrant small molecule idasanutlin resulted in synthetic lethality in orthotopic glioblastoma xenograft models. Notably, neither the degree of EGFR-signaling inhibition nor genetic analysis of EGFR was sufficient to predict sensitivity to this therapeutic combination. However, detection of rapid inhibitory effects on [18F]fluorodeoxyglucose uptake, assessed through noninvasive positron emission tomography, was an effective predictive biomarker of response in vivo. Together, these studies identify a crucial link among oncogene signaling, glucose metabolism, and cytoplasmic p53, which may potentially be exploited for combination therapy in GBM and possibly other malignancies

    An Exploratory Study of Primary Care Physician Decision Making Regarding Total Joint Arthroplasty

    Get PDF
    BACKGROUND: For patients to experience the benefits of total joint arthroplasty (TJA), primary care physicians (PCPs) ought to know when to refer a patient for TJA and/or optimize nonsurgical treatment options for osteoarthritis (OA). OBJECTIVE: To evaluate the ability of physicians to make clinical treatment decisions. DESIGN AND PARTICIPANTS: A survey, using ten clinical vignettes, of PCPs in Indiana. MEASUREMENTS: A test score (range 0 to 10) was computed based on the number of correct answers consistent with published explicit appropriateness criteria for TJA. We also collected demographic characteristics and physicians’ perceived success rate of TJA in terms of pain relief and functional improvement. RESULTS: There were 149 PCPs (response rate = 61%) who participated. The mean test score was 6.5 ± 1.5. Only 17% correctly identified the published success rate of TJA (i.e., ≥90%). In multivariate analysis, the only physician-related variables associated with test score were ethnicity, board status, and perceived success rate of TJA. Physicians who were white (P = .001), board-certified (P = .04), and perceived a higher success rate of TJA (P = .004) had higher test scores. CONCLUSIONS: PCP knowledge with respect to guideline-concordant care for OA could be improved, specifically in deciding when to consider TJA versus optimizing nonsurgical options. Moreover, the perception of the success rate of TJA may influence a clinician’s decision making

    Anti-West Nile virus activity of in vitro expanded human primary natural killer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Natural Killer (NK) cells are a crucial component of the host innate immune system with anti-viral and anti-cancer properties. However, the role of NK cells in West Nile virus (WNV) infection is controversial, with reported effects ranging from active suppression of virus to no effect at all. It was previously shown that K562-mb15-41BBL (K562D2) cells, which express IL-15 and 4-1BBL on the K562 cell surface, were able to expand and activate human primary NK cells of normal peripheral blood mononuclear cells (PBMC). The expanded NK cells were tested for their ability to inhibit WNV infection <it>in vitro</it>.</p> <p>Results</p> <p>Co-culture of PBMC with irradiated K562D2 cells expanded the NK cell number by 2-3 logs in 2-3 weeks, with more than 90% purity; upregulated NK cell surface activation receptors; downregulated inhibitory receptors; and boosted interferon gamma (IFN-γ) production by ~33 fold. The expanded NK (D2NK) cell has strong natural killing activity against both K562 and Vero cells, and killed the WNV infected Vero cells through antibody-dependent cellular cytotoxicity (ADCC). The D2NK cell culture supernatants inhibited both WNV replication and WNV induced cytopathic effect (CPE) in Vero cells when added before or after infection. Anti-IFN-γ neutralizing antibody blocked the NK supernatant-mediated anti-WNV effect, demonstrating a noncytolytic activity mediated through IFN-γ.</p> <p>Conclusions</p> <p>Co-culture of PBMC with K562D2 stimulatory cells is an efficient technique to prepare large quantities of pure and active NK cells, and these expanded NK cells inhibited WNV infection of Vero cells through both cytolytic and noncytolytic activities, which may imply a potential role of NK cells in combating WNV infection.</p

    The role of intradiscal steroids in the treatment of discogenic low back pain

    Get PDF
    LBP is one of the most common reasons for visiting a doctor and is the most common cause of disability under age 45.Amongst a variety of etiologies, internal disc disruption (IDD) has been postulated as an important cause of low back pain. Treating discogenic low back pain continues to be a challenge to physicians. Inflammation, either from direct chemical irritation or secondary to an autoimmune response to the nucleus pulposus has been implicated as the primary pain source. Both steroids and non-steroidal anti-inflammatory drugs have partial effectiveness in treating pain associated with inflammation. Therefore, the rationale for using intradiscal steroids is to suppress the inflammation within the disc, thereby alleviating the patient’s symptoms. The goal of this article is to review the literature regarding the efficacy of intradiscal steroids to treat low back pain of discogenic origin

    Production and characterization of a recombinant single-chain antibody against Hantaan virus envelop glycoprotein

    Get PDF
    Hantaan virus (HTNV) is the type of Hantavirus causing hemorrhagic fever with renal syndrome, for which no specific therapeutics are available so far. Cell type-specific internalizing antibodies can be used to deliver therapeutics intracellularly to target cell and thus, have potential application in anti-HTNV infection. To achieve intracellular delivery of therapeutics, it is necessary to obtain antibodies that demonstrate sufficient cell type-specific binding, internalizing, and desired cellular trafficking. Here, we describe the prokaryotic expression, affinity purification, and functional testing of a single-chain Fv antibody fragment (scFv) against HTNV envelop glycoprotein (GP), an HTNV-specific antigen normally located on the membranes of HTNV-infected cells. This HTNV GP-targeting antibody, scFv3G1, was produced in the cytoplasm of Escherichia coli cells as a soluble protein and was purified by immobilized metal affinity chromatography. The purified scFv possessed a high specific antigen-binding activity to HTNV GP and HTNV-infected Vero E6 cells and could be internalized into HTNV-infected cells probably through the clathrin-dependent endocytosis pathways similar to that observed with transferrin. Our results showed that the E. coli-produced scFv had potential applications in targeted and intracellular delivery of therapeutics against HTNV infections
    corecore