265 research outputs found

    Optical control of exopolysaccharide production in Sinorhizobium meliloti for studying biofilm formation and water retention

    Get PDF
    The rhizosphere contains many types of microbes interacting with plant roots, creating a complex symbiotic system. Microbial processes occurring in the rhizosphere are essential to the productivity of terrestrial ecosystems. In particular, exopolysaccharide produced by soil microbes allows dynamic regulation of soil moisture by modulating water transport. We have demonstrated that purified microbial exopolysaccharide (EPS) impacts soil water retention through enhancing the variability of water distributions in the soil microstructure. However, the impact of EPS on water transport in soil is not understood due to complex interaction of microbial EPS with soil microstructure and particle surface properties. To decipher the causal role of EPS in soil microstructures, we set out to develop engineered soil bacteria with spatially regulated EPS biosynthesis capabilities. Here we report genetic engineering of soil bacterium Sinorhizobium meliloti to enable in situ spatial control of EPS production. We show that the photo-sensitive transcription factor EL222, derived from Erythrobacter litoralis, allows robust control of gene expression in S. meliloti. Essential genes in the type II EPS (a major component of EPS from S. meliloti in the soil) production pathway were identified, and deletion strains were generated. Complementation of the essential gene using a synthetic promoter controlled by EL222 led to robust light-activated production of EPS. Optimization of the engineered genetic construct was performed by varying promoters, ribosome binding sites, and using alternative start codons. Using the engineered EPS production strain, we observed rapid settlement of EPS producing S. meliloti in liquid culture, and selective biofilm formation quantified by a crystal violet staining assay. This approach enables spatially regulated EPS production and biofilm formation. We will demonstrate control of gene expression in a synthetic soil microsystem that emulates aggregated sandy loam soil. We will also report our current progress on using these new strains of soil bacteria to study the impact of EPS production on water drying rate in the synthetic soil microsystem. We anticipate that the engineered genetic constructs will be broadly applicable for dissecting gene function in a defined population of microbes in the rhizosphere

    An Overview of Biomaterials in Periodontology and Implant Dentistry

    Get PDF
    Material is a crucial factor for the restoration of the tooth or periodontal structure in dentistry. Various biomaterials have been developed and clinically applied for improved periodontal tissue regeneration and osseointegration, especially in periodontology and dental implantology. Furthermore, the biomimetic approach has been the subject of active research in recent years. In this review, the most widely studied biomaterials (bone graft material, barrier membrane, and growth or differentiation factors) and biomimetic approaches to obtain optimal tissue regeneration by making the environment almost similar to that of the extracellular matrix are discussed and specifically highlighted

    Erratum: Nation-Wide Korean Breast Cancer Data from 2008 Using the Breast Cancer Registration Program

    Get PDF
    nation-wide breast cancer data and analyzed the data using their online registration program biannually. The purpose of this study was to evaluate the characteristics of Korean breast cancer from 2008 and examine chronological based patterns. Methods: Data were collected from 38 medical schools (67 hospitals), 20 general hospitals, and 10 private clinics. The data on the total number, gender, and age distribution were collected through a questionnaire as well as other detailed data analyzed via the online registration program. Results: In 2008, there were 13,908 patients who were newly diagnosed with breast cancer. The crude incidence rate of female breast cancer was 57.3 among 100,000 and the median age was 49 years. The age distribution had not changed since the initial survey; however the proportion of postmenopausal patients had increased and median age was older than the past. In staging distribution, the proportion of early breast cancer (stage 0, I) was 47.2 % with, breast-conserving surgery performed in 58 % and mastectomy in 39.5%. Conclusion: Compared to past data, the incidence of breast cancer in Korea continues to rise. Furthermore, the proportion of those detected by screening and breast conservation surgery has increased remarkably. To understand the patterns of Korean breast cancer, the nation-wide data should continuously investigated

    The One Year Outcome after KTP Laser Vaporization of the Prostate According to the Calculated Vaporized Volume

    Get PDF
    The aim of this study was to develop a new simple method for measuring the vaporized volume and to evaluate the outcome of high-power potassium-titanyl-phosphate (KTP) photoselective laser vaporization. A total of 65 patients, with a mean age of 67.7 yr (range 53 to 85), were included in the primary analysis. The vaporized volume was calculated as the pre-operative volume minus the immediate post-operative volume plus the volume of the defect. For all patients, the subjective and objective parameters improved significantly after surgery. Six and 12 months after surgery, the group with a smaller vaporized volume (<15 g) had a lower reduction of the mean International Prostate Symptom Score (P=0.006 and P=0.004) and quality of life index (P=0.006 and P=0.004) when compared to the group with a greater vaporized volume (≥15 g). There were no differences in the change of the maximum flow rate and post-void residual based on the vaporized volume. Our findings suggest that the subjective improvement, after a high-power KTP laser vaporization, may be dependent on the vaporized volume obtained after the procedure

    Local Recurrence of Hepatocellular Carcinoma after Segmental Transarterial Chemoembolization: Risk Estimates Based on Multiple Prognostic Factors

    Get PDF
    OBJECTIVE: To determine the prognostic factors for local recurrence of nodular hepatocellular carcinoma after segmental transarterial chemoembolization. MATERIALS AND METHODS: Seventy-four nodular hepatocellular carcinoma tumors < or = 5 cm were retrospectively analyzed for local recurrence after segmental transarterial chemoembolization using follow-up CT images (median follow-up of 17 months, 4-77 months in range). The tumors were divided into four groups (IA, IB, IIA, and IIB) according to whether the one-month follow-up CT imaging, after segmental transarterial chemoembolization, showed homogeneous (Group I) or inhomogeneous (Group II) iodized oil accumulation, or whether the tumors were located within the liver segment (Group A) or in a segmental border zone (Group B). Comparison of tumor characteristics between Group IA and the other three groups was performed using the chi-square test. Local recurrence rates were compared among the groups using the Kaplan-Meier estimation and log rank test. RESULTS: Local tumor recurrence occurred in 19 hepatocellular carcinoma tumors (25.7%). There were: 28, 18, 17, and 11 tumors in Group IA, IB, IIA, and IIB, respectively. One of 28 (3.6%) tumors in Group IA, and 18 of 46 (39.1%) tumors in the other three groups showed local recurrence. Comparisons between Group IA and the other three groups showed that the tumor characteristics were similar. One-, two-, and three-year estimated local recurrence rates in Group IA were 0%, 11.1%, and 11.1%, respectively. The difference between Group IA and the other three groups was statistically significant (p = 0.000). CONCLUSION: An acceptably low rate of local recurrence was observed for small or intermediate nodular tumors located within the liver segment with homogeneous iodized oil accumulation

    Electron energy increase in a laser wakefield accelerator using up-ramp plasma density profiles

    Get PDF
    The phase velocity of the wakefield of a laser wakefield accelerator can, theoretically, be manipulated by shaping the longitudinal plasma density profile, thus controlling the parameters of the generated electron beam. We present an experimental method where using a series of shaped longitudinal plasma density profiles we increased the mean electron peak energy more than 50%, from 175 +/- 1 MeV to 262 +/- 10 MeV and the maximum peak energy from 182 MeV to 363 MeV. The divergence follows closely the change of mean energy and decreases from 58.9 +/- 0.45 mrad to 12.6 +/- 1.2 mrad along the horizontal axis and from 35 +/- 0.3 mrad to 8.3 +/- 0.69 mrad along the vertical axis. Particle-in-cell simulations show that a ramp in a plasma density profile can affect the evolution of the wakefield, thus qualitatively confirming the experimental results. The presented method can increase the electron energy for a fixed laser power and at the same time offer an energy tunable source of electrons.© The Author(s) 201
    corecore