462 research outputs found

    Acoustically evoked potentials in two cephalopods inferred using the auditory brainstem response (ABR) approach

    Get PDF
    It is still a matter of debate whether cephalopods can detect sound frequencies above 400 Hz. So far there is no proof for the detection of underwater sound above 400 Hz via a physiological approach. The controversy of whether cephalopods have a sound detection ability above 400 Hz was tested using the auditory brainstem response (ABR) approach, which has been successfully applied in fish, crustaceans, amphibians, reptiles and birds. Using ABR we found that auditory evoked potentials can be obtained in the frequency range 400 to 1500 Hz (Sepiotheutis lessoniana) and 400 to 1000 Hz (Octopus vulgaris), respectively. The thresholds of S. lessoniana were generally lower than those of O. vulgaris

    Receiver-Initiated Data Collection in Wake-Up Radio Enabled mIoT Networks: Achieving Collision-Free Transmissions by Hashing and Partitioning

    Get PDF
    To achieve ultra-low energy consumption and decade-long battery lifetime for Internet of Things (IoT) networks, wake-up radio (WuR) appears as an eminent solution. While keeping devices in deep sleep for most of the time, a WuR enabled IoT device can be woken up for data transmission at any time by a wake-up call (WuC). However, collisions happen among WuCs for transmitter-initiated data reporting and among data packets for receiver-initiated data collection. In this article, we propose three novel hashing-based schemes in order to achieve collision-free data transmissions for receiver-initiated data collection. We consider first a simple scenario where all devices in a region of interest are reachable by a WuC message and propose a scheme which facilitates a scheduled time instant for data uploading of each device through a hash function. In the second scenario where IoT devices are distributed across a large region that cannot be covered by a single WuC, we propose two partitioning algorithms to enable data collection across multiple partitions. Furthermore, we extend the scenario by considering device mobility and propose another scheme which improves the partitioning algorithm to deal with mobility. Both analysis and simulations are performed to demonstrate the effectiveness of the proposed schemes.acceptedVersio

    Image-guided transcranial focused ultrasound stimulates human primary somatosensory cortex

    Get PDF
    Focused ultrasound (FUS) has recently been investigated as a new mode of non-invasive brain stimulation, which offers exquisite spatial resolution and depth control. We report on the elicitation of explicit somatosensory sensations as well as accompanying evoked electroencephalographic (EEG) potentials induced by FUS stimulation of the human somatosensory cortex. As guided by individual-specific neuroimage data, FUS was transcranially delivered to the hand somatosensory cortex among healthy volunteers. The sonication elicited transient tactile sensations on the hand area contralateral to the sonicated hemisphere, with anatomical specificity of up to a finger, while EEG recordings revealed the elicitation of sonication-specific evoked potentials. Retrospective numerical simulation of the acoustic propagation through the skull showed that a threshold of acoustic intensity may exist for successful cortical stimulation. The neurological and neuroradiological assessment before and after the sonication, along with strict safety considerations through the individual-specific estimation of effective acoustic intensity in situ and thermal effects, showed promising initial safety profile; however, equal/more rigorous precautionary procedures are advised for future studies. The transient and localized stimulation of the brain using image-guided transcranial FUS may serve as a novel tool for the non-invasive assessment and modification of region-specific brain functionopen43

    Subscapular and Pectoralis Major Sparing Deltopectoral Approach for Reverse Total Shoulder Arthroplasty

    Get PDF
    In reverse ball shoulder replacement, surgery is usually performed using a deltopectoral approach or an anterosuperior transdeltoid approach. The deltopectoral approach is to incise the pectoralis major to upper 1/3 to 1/2, and subscapularis tendon should be removed at the lesser tuberosity of the humerus. This approach has the problem of breaking the shoulder deltoid instead of incising the rotator cuff. Therefore, we report a detailed procedure of reverse ball shoulder replacement using approach without incision of the pectoralis major muscle and subscapularis muscle

    Treatment of instability with scapular notching and glenoid component loosing by partial mixed different implant revision

    Get PDF
    In general, reverse shoulder arthroplasty revision is performed using the same implant for both the humerus and glenoid components. However, the authors of the present case used different implants from what was used previously for treating instability with scapular notching and glenoid aseptic loosening and report the case

    Oldenlandia diffusa Promotes Antiproliferative and Apoptotic Effects in a Rat Hepatocellular Carcinoma with Liver Cirrhosis

    Get PDF
    Oldenlandia diffusa (OD) is commonly used with various diseases such as cancer, arthritis, and autoimmune disease. Liver cirrhosis is a predominant risk factor for hepatocellular carcinoma (HCC). Here, we show that the therapeutic effect of OD, which was investigated both in vitro and chemically, induced HCC model. OD significantly enhanced apoptosis and antiproliferative activity and reduced migration ability of HCC cells. In vivo, OD was treated twice a day for 28 days after confirmed HCC model through 2-[(18)F]-fluoro-2-deoxy-D-glucose ((18)F-FDG) imaging. The survival in OD treated groups was shown to have a greater therapeutic effect than the control group. 28 days after OD treatment, OD treated groups resulted in a significant reduction in tumor number, size, (18)F-FDG uptake, and serum levels such as alanine transaminase, aspartate transaminase, and alkaline phosphate compared to the control group. Also, proliferated cells in tumor sites by OD were reduced compared to the control group. Furthermore, several rats in OD treated group survived over 60 days and liver morphology of these rats showed the difference between tumor mass and normal tissue. These results suggest that OD may have antiproliferative activity, inhibition of metastasis, and apoptotic effects in chemically induced HCC model and can have the potential use for clinical application as anticancer drug of the herbal extract

    Focused ultrasound-mediated suppression of chemically-induced acute epileptic EEG activity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epilepsy is a common neurological disorder, which is attributed to uncontrollable abnormal hyper-excitability of neurons. We investigated the feasibility of using low-intensity, pulsed radiation of focused ultrasound (FUS) to non-invasively suppress epileptic activity in an animal model (rat), which was induced by the intraperitonial injection of pentylenetetrazol (PTZ).</p> <p>Results</p> <p>After the onset of induced seizures, FUS was transcranially administered to the brain twice for three minutes each while undergoing electroencephalographic (EEG) monitoring. An air-backed, spherical segment ultrasound transducer (diameter: 6 cm; radius-of-curvature: 7 cm) operating at a fundamental frequency of 690 KHz was used to deliver a train of 0.5 msec-long pulses of sonication at a repetitive rate of 100 Hz to the thalamic areas of the brain. The acoustic intensity (130 mW/cm<sup>2</sup>) used in the experiment was sufficiently within the range of safety guidelines for the clinical ultrasound imaging. The occurrence of epileptic EEG bursts from epilepsy-induced rats significantly decreased after sonication when it was compared to the pre-sonication epileptic state. The PTZ-induced control group that did not receive any sonication showed a sustained number of epileptic EEG signal bursts. The animals that underwent sonication also showed less severe epileptic behavior, as assessed by the Racine score. Histological analysis confirmed that the sonication did not cause any damage to the brain tissue.</p> <p>Conclusions</p> <p>These results revealed that low-intensity, pulsed FUS sonication suppressed the number of epileptic signal bursts using acute epilepsy model in animal. Due to its non-invasiveness and spatial selectivity, FUS may offer new perspectives for a possible non-invasive treatment of epilepsy.</p
    corecore