10,158 research outputs found

    Existence of negative differential thermal conductance in one-dimensional diffusive thermal transport

    Get PDF
    We show that in a finite one-dimensional (1D) system with diffusive thermal transport described by the Fourier's law, negative differential thermal conductance (NDTC) cannot occur when the temperature at one end is fixed. We demonstrate that NDTC in this case requires the presence of junction(s) with temperature dependent thermal contact resistance (TCR). We derive a necessary and sufficient condition for the existence of NDTC in terms of the properties of the TCR for systems with a single junction. We show that under certain circumstances we even could have infinite (negative or positive) differential thermal conductance in the presence of the TCR. Our predictions provide theoretical basis for constructing NDTC-based devices, such as thermal amplifiers, oscillators and logic devices

    Acoustically evoked potentials in two cephalopods inferred using the auditory brainstem response (ABR) approach

    Get PDF
    It is still a matter of debate whether cephalopods can detect sound frequencies above 400 Hz. So far there is no proof for the detection of underwater sound above 400 Hz via a physiological approach. The controversy of whether cephalopods have a sound detection ability above 400 Hz was tested using the auditory brainstem response (ABR) approach, which has been successfully applied in fish, crustaceans, amphibians, reptiles and birds. Using ABR we found that auditory evoked potentials can be obtained in the frequency range 400 to 1500 Hz (Sepiotheutis lessoniana) and 400 to 1000 Hz (Octopus vulgaris), respectively. The thresholds of S. lessoniana were generally lower than those of O. vulgaris

    Phase Coherence and Superfluid-Insulator Transition in a Disordered Bose-Einstein Condensate

    Get PDF
    We have studied the effects of a disordered optical potential on the transport and phase coherence of a Bose-Einstein condensate (BEC) of 7Li atoms. At moderate disorder strengths (V_D), we observe inhibited transport and damping of dipole excitations, while in time-of-flight images, random but reproducible interference patterns are observed. In-situ images reveal that the appearance of interference is correlated with density modulation, without complete fragmentation. At higher V_D, the interference contrast diminishes as the BEC fragments into multiple pieces with little phase coherence.Comment: 4 pages, 5 figures, distortions in figures 1 and 4 have been fixed in version 3. This paper has been accepted to PR

    Tuning the thermal conductivity of graphene nanoribbons by edge passivation and isotope engineering: a molecular dynamics study

    Get PDF
    Using classical molecular dynamics simulation, we have studied the effect of edge-passivation by hydrogen (H-passivation) and isotope mixture (with random or supperlattice distributions) on the thermal conductivity of rectangular graphene nanoribbons (GNRs) (of several nanometers in size). We found that the thermal conductivity is considerably reduced by the edge H-passivation. We also find that the isotope mixing can reduce the thermal conductivities, with the supperlattice distribution giving rise to more reduction than the random distribution. These results can be useful in nanoscale engineering of thermal transport and heat management using GNRs.Comment: 4 pages, 4 figure

    Pinning modes and interlayer correlation in high magnetic field bilayer Wigner solids

    Full text link
    We report studies of pinning mode resonances in the low total Landau filling (\nu) Wigner solid of a series of bilayer hole samples with negligible interlayer tunneling, and with varying interlayer separation d. Comparison of states with equal layer densities (p,p) to single layer states (p,0) produced {in situ} by biasing, indicates that there is interlayer quantum correlation in the solid at small d. Also, the resonance frequency at small d is decreased just near \nu=1/2 and 2/3, indicating the importance in the solid of correlations related to those in the fractional quantum Hall effects

    Statistical Physics Modeling of Disordered Metallic Alloys

    Get PDF
    The great majority of metallic alloys in use are disordered. The material property of a disordered alloy changes on exposure to thermal, chemical, or mechanical forcing; the changes are often irreversible. We present a new first principle method for modeling disordered metallic alloys suitable for predicting how the morphology, strength, and transport property would evolve under arbitrary forcing conditions. Such a predictive capability is critically important in designing new alloys for applications, such as in new-generation fission and fusion reactors, where unrelenting harsh thermal loading conditions exist. The protocol is developed for constructing a coarse-grained model that can be specialized for the evolution of thermophysical properties of an arbitrary disordered alloy under thermal, stress, nuclear, or chemical forcing scenarios. We model a disordered binary alloy as a randomly close-packed (RCP) assembly of constituent atoms at given composition. As such, a disordered alloy specimen is an admixture of nanocrystallites and glassy matter. For the present purpose, we first assert that interatomic interactions are by repulsion only, but the contributions from the attractive part of the interaction are restored by treating the nanocrystallites as nanoscale pieces of a single crystalline solid composed of the same constituent atoms. Implementation of the protocol is discussed for heating of disordered metals, and results are compared to the known melting point data

    Concatenating dynamical decoupling with decoherence-free subspaces for quantum computation

    Full text link
    A scheme to implement a quantum computer subjected to decoherence and governed by an untunable qubit-qubit interaction is presented. By concatenating dynamical decoupling through bang-bang (BB) pulse with decoherence-free subspaces (DFSs) encoding, we protect the quantum computer from environment-induced decoherence that results in quantum information dissipating into the environment. For the inherent qubit-qubit interaction that is untunable in the quantum system, BB control plus DFSs encoding will eliminate its undesired effect which spoils quantum information in qubits. We show how this quantum system can be used to implement universal quantum computation.Comment: 6 pages,2 figures, 1 tabl

    AC Magnetotransport in Reentrant Insulating Phases of Two-dimensional Electrons near 1/5 and 1/3 Landau fillings

    Full text link
    We have measured high frequency magnetotransport of a high quality two-dimensional electron system (2DES) near the reentrant insulating phase (RIP) at Landau fillings (ν\nu) between 1/5 and 2/9. The magneto\textit{conductivity} in the RIP has resonant behavior around 150 MHz, showing a \textit{peak} at ν\nu\sim0.21. Our data support the interpretation of the RIP as due to some pinned electron solid. We have also investigated a narrowly confined 2DES recently found to have a RIP at 1/3<<ν\nu<<1/2 and we have revealed features, not seen in DC transport, that suggest some intriguing interplay between the 1/3 FQHE and RIP.Comment: 4 pages and 1 figure (amsart format), 16th International Conference on High Magnetic Fields in Semiconductor Physics (SemiMag16), August 2-6, 2004, Tallahasse
    corecore