16,277 research outputs found

    Finite-size scaling of out-of-time-ordered correlators at late times

    Get PDF
    Chaotic dynamics in quantum many-body systems scrambles local information so that at late times it can no longer be accessed locally. This is reflected quantitatively in the out-of-time-ordered correlator of local operators, which is expected to decay to zero with time. However, for systems of finite size, out-of-time-ordered correlators do not decay exactly to zero and in this paper we show that the residual value can provide useful insights into the chaotic dynamics. When energy is conserved, the late-time saturation value of the out-of-time-ordered correlator of generic traceless local operators scales as an inverse polynomial in the system size. This is in contrast to the inverse exponential scaling expected for chaotic dynamics without energy conservation. We provide both analytical arguments and numerical simulations to support this conclusion.Comment: improved presentatio

    S-Lemma with Equality and Its Applications

    Full text link
    Let f(x)=xTAx+2aTx+cf(x)=x^TAx+2a^Tx+c and h(x)=xTBx+2bTx+dh(x)=x^TBx+2b^Tx+d be two quadratic functions having symmetric matrices AA and BB. The S-lemma with equality asks when the unsolvability of the system f(x)<0,h(x)=0f(x)<0, h(x)=0 implies the existence of a real number μ\mu such that f(x)+μh(x)0, xRnf(x) + \mu h(x)\ge0, ~\forall x\in \mathbb{R}^n. The problem is much harder than the inequality version which asserts that, under Slater condition, f(x)<0,h(x)0f(x)<0, h(x)\le0 is unsolvable if and only if f(x)+μh(x)0, xRnf(x) + \mu h(x)\ge0, ~\forall x\in \mathbb{R}^n for some μ0\mu\ge0. In this paper, we show that the S-lemma with equality does not hold only when the matrix AA has exactly one negative eigenvalue and h(x)h(x) is a non-constant linear function (B=0,b0B=0, b\not=0). As an application, we can globally solve inf{f(x)h(x)=0}\inf\{f(x)\vert h(x)=0\} as well as the two-sided generalized trust region subproblem inf{f(x)lh(x)u}\inf\{f(x)\vert l\le h(x)\le u\} without any condition. Moreover, the convexity of the joint numerical range {(f(x),h1(x),,hp(x)): xRn}\{(f(x), h_1(x),\ldots, h_p(x)):~x\in\Bbb R^n\} where ff is a (possibly non-convex) quadratic function and h1(x),,hp(x)h_1(x),\ldots,h_p(x) are affine functions can be characterized using the newly developed S-lemma with equality.Comment: 34 page

    A generalized structure of Bell inequalities for bipartite arbitrary dimensional systems

    Full text link
    We propose a generalized structure of Bell inequalities for arbitrary d-dimensional bipartite systems, which includes the existing two types of Bell inequalities introduced by Collins-Gisin-Linden-Massar-Popescu [Phys. Rev. Lett. 88, 040404 (2002)] and Son-Lee-Kim [Phys. Rev. Lett. 96, 060406 (2006)]. We analyze Bell inequalities in terms of correlation functions and joint probabilities, and show that the coefficients of correlation functions and those of joint probabilities are in Fourier transform relations. We finally show that the coefficients in the generalized structure determine the characteristics of quantum violation and tightness.Comment: 6 pages, 1 figur

    Extracellular signal-regulated kinases mediate the enhancing effects of inflammatory mediators on resurgent currents in dorsal root ganglion neurons

    Get PDF
    Previously we reported that a group of inflammatory mediators significantly enhanced resurgent currents in dorsal root ganglion neurons. To understand the underlying intracellular signaling mechanism, we investigated the effects of inhibition of extracellular signal-regulated kinases and protein kinase C on the enhancing effects of inflammatory mediators on resurgent currents in rat dorsal root ganglion neurons. We found that the extracellular signal-regulated kinases inhibitor U0126 completely prevented the enhancing effects of the inflammatory mediators on both Tetrodotoxin-sensitive and Tetrodotoxin-resistant resurgent currents in both small and medium dorsal root ganglion neurons. U0126 substantially reduced repetitive firing in small dorsal root ganglion neurons exposed to inflammatory mediators, consistent with prevention of resurgent current amplitude increases. The protein kinase C inhibitor Bisindolylmaleimide I also showed attenuating effects on resurgent currents, although to a lesser extent compared to extracellular signal-regulated kinases inhibition. These results indicate a critical role of extracellular signal-regulated kinases signaling in modulating resurgent currents and membrane excitability in dorsal root ganglion neurons treated with inflammatory mediators. It is also suggested that targeting extracellular signal-regulated kinases-resurgent currents might be a useful strategy to reduce inflammatory pain

    A linear theory for control of non-linear stochastic systems

    Get PDF
    We address the role of noise and the issue of efficient computation in stochastic optimal control problems. We consider a class of non-linear control problems that can be formulated as a path integral and where the noise plays the role of temperature. The path integral displays symmetry breaking and there exist a critical noise value that separates regimes where optimal control yields qualitatively different solutions. The path integral can be computed efficiently by Monte Carlo integration or by Laplace approximation, and can therefore be used to solve high dimensional stochastic control problems.Comment: 5 pages, 3 figures. Accepted to PR

    Rates of Neutrino Absorption on Nucleons and the Reverse Processes in Strong Magnetic Fields

    Full text link
    The rates of electron neutrino capture on neutron, electron anti-neutrino capture on proton, and their reverse processes are important for understanding the production of heavy elements in the supernova environment above the protoneutron star. Observations and theoretical considerations suggest that some protoneutron stars may be born with strong magnetic fields. We develop a numerical method to calculate the above rates in supernova environments with magnetic fields up to 10^16 G. This method is accurate to the order of one over nucleon mass. We show that our results have the correct behavior in the limit of high neutrino energy or small magnetic field. Based on comparison of our results with various approximations, we recommend efficient estimates of the above rates for use in models of supernova nucleosynthesis in the presence of strong magnetic fields.Comment: 21 pages, 4 figures. Some explaination and references are added in the second versio

    Nonequilibrium quantum criticality in open electronic systems

    Full text link
    A theory is presented of quantum criticality in open (coupled to reservoirs) itinerant electron magnets, with nonequilibrium drive provided by current flow across the system. Both departures from equilibrium at conventional (equilibrium) quantum critical points and the physics of phase transitions induced by the nonequilibrium drive are treated. Nonequilibrium-induced phase transitions are found to have the same leading critical behavior as conventional thermal phase transitions.Comment: 5 pages, 1 figur
    corecore