2,779 research outputs found

    Exact solution of gyration radius of individual's trajectory for a simplified human mobility model

    Full text link
    Gyration radius of individual's trajectory plays a key role in quantifying human mobility patterns. Of particular interests, empirical analyses suggest that the growth of gyration radius is slow versus time except the very early stage and may eventually arrive to a steady value. However, up to now, the underlying mechanism leading to such a possibly steady value has not been well understood. In this Letter, we propose a simplified human mobility model to simulate individual's daily travel with three sequential activities: commuting to workplace, going to do leisure activities and returning home. With the assumption that individual has constant travel speed and inferior limit of time at home and work, we prove that the daily moving area of an individual is an ellipse, and finally get an exact solution of the gyration radius. The analytical solution well captures the empirical observation reported in [M. C. Gonz`alez et al., Nature, 453 (2008) 779]. We also find that, in spite of the heterogeneous displacement distribution in the population level, individuals in our model have characteristic displacements, indicating a completely different mechanism to the one proposed by Song et al. [Nat. Phys. 6 (2010) 818].Comment: 4 pages, 4 figure

    Analysis of genetic diversity and construction of core collection of local mulberry varieties from Shanxi Province based on ISSR marker

    Get PDF
    Genetic diversity of 73 local mulberry varieties from Shanxi Province were screened using ISSR markers, with l5 primers combinations selected for their reproducibility and polymorphism. 129 bands were amplified, of which 115 bands showed polymorphism and the ratio of polymorphism bands was 89.15%. Nei’s genetic similarity coefficients ranged from 0.5891 to 0.9457 with an average of 0.7674. The observed number of alleles of each loci, effective number of alleles of each loci, Nei’s gene diversity, Shannon’s information index were 1.8915, 1.4771, 0.2780 and 0.4197, respectively. Clustering results showed that the 73 varieties could be divided into three different groups and nine subgroups. By using stepwise clustering and random methods and the modified heuristic algorithm, 21 core collections were constructed and the ratio of core collection was 28.77%. The result of t-test to the parameters (the number effective of alleles, Nei's genetic diversity index and Shannon's information index) showed that there was not significant difference between the core collection and initial sample with the exception of the number of observed alleles, that is, the core collection could well represent the initial sample.Key words: Mulberry, germplasm resource, genetic diversity, ISSR, cluster analysis, core collection

    Resonant peak splitting for ballistic conductance in magnetic superlattices

    Full text link
    We investigate theoretically the resonant splitting of ballistic conductance peaks in magnetic superlattices. It is found that, for magnetic superlattices with periodically arranged nn identical magnetic-barriers, there exists a general (n−1)(n-1)-fold resonant peak splitting rule for ballistic conductance, which is the analogy of the (n−1)(n-1)-fold resonant splitting for transmission in nn-barrier electric superlattices (R. Tsu and L. Esaki, Appl. Phys. Lett. {\bf 22}, 562 (1973)).Comment: 9 pages, 3 figures, latex forma

    Large deformation of spherical vesicle studied by perturbation theory and Surface evolver

    Full text link
    With tangent angle perturbation approach the axial symmetry deformation of a spherical vesicle in large under the pressure changes is studied by the elasticity theory of Helfrich spontaneous curvature model.Three main results in axial symmetry shape: biconcave shape, peanut shape, and one type of myelin are obtained. These axial symmetry morphology deformations are in agreement with those observed in lipsome experiments by dark-field light microscopy [Hotani, J. Mol. Biol. 178, (1984) 113] and in the red blood cell with two thin filaments (myelin) observed in living state (see, Bessis, Living Blood Cells and Their Ultrastructure, Springer-Verlag, 1973). Furthermore, the biconcave shape and peanut shape can be simulated with the help of a powerful software, Surface Evolver [Brakke, Exp. Math. 1, 141 (1992) 141], in which the spontaneous curvature can be easy taken into account.Comment: 16 pages, 6 EPS figures and 2 PS figure

    Demand Response Load Following of Source and Load Systems

    Get PDF

    Thermodynamic Geometry of black hole in the deformed Horava-Lifshitz gravity

    Full text link
    We investigate the thermodynamic geometry and phase transition of Kehagias-Sfetsos black hole in the deformed Horava-Lifshitz gravity with coupling constant λ=1\lambda=1. The phase transition in black hole thermodynamics is thought to be associated with the divergence of the capacities. And the structures of these divergent points are studied. We also find that the thermodynamic curvature produced by the Ruppeiner metric is positive definite for all r+>r−r_+ > r_- and is divergence at η2=0\eta_2=0 corresponded to the divergent points of CΦC_{\Phi} and CTC_T. These results suggest that the microstructure of the black hole has an effective repulsive interaction, which is very similar to the ideal gas of fermions. These may shine some light on the microstructure of the black hole.Comment: 5 pages, 3 figure

    Fast generation of Schr\uf6dinger cat states using a Kerr-tunable superconducting resonator

    Get PDF
    Schr\uf6dinger cat states, quantum superpositions of macroscopically distinct classical states, are an important resource for quantum communication, quantum metrology and quantum computation. Especially, cat states in a phase space protected against phase-flip errors can be used as a logical qubit. However, cat states, normally generated in three-dimensional cavities and/or strong multi-photon drives, are facing the challenges of scalability and controllability. Here, we present a strategy to generate and preserve cat states in a coplanar superconducting circuit by the fast modulation of Kerr nonlinearity. At the Kerr-free work point, our cat states are passively preserved due to the vanishing Kerr effect. We are able to prepare a 2-component cat state in our chip-based device with a fidelity reaching 89.1% under a 96 ns gate time. Our scheme shows an excellent route to constructing a chip-based bosonic quantum processor

    Total Reaction Cross Section in an Isospin-Dependent Quantum Molecular Dynamics (IDQMD) Model

    Full text link
    The isospin-dependent quantum molecular dynamics (IDQMD) model is used to study the total reaction cross section σR\sigma_R. The energy-dependent Pauli volumes of neutrons and protons have been discussed and introduced into the IDQMD calculation to replace the widely used energy-independent Pauli volumes. The modified IDQMD calculation can reproduce the experimental σR\sigma_R well for both stable and exotic nuclei induced reactions. Comparisons of the calculated σR\sigma_R induced by 11Li^{11}Li with different initial density distributions have been performed. It is shown that the calculation by using the experimentally deduced density distribution with a long tail can fit the experimental excitation function better than that by using the Skyrme-Hartree-Fock calculated density without long tails. It is also found that σR\sigma_R at high energy is sensitive to the long tail of density distribution.Comment: 4 page, 4 fig

    Strong and Electromagnetic Decays of X(1835) as a Baryonium State

    Full text link
    With the assumption that the recently observed X(1835) is a baryonium state we have studied the strong decays of X(1835)→η(′)π+π−,η(′)π0π0X(1835) \to \eta^{(\prime)} \pi^+ \pi^-, \eta^{(\prime)} \pi^0 \pi^0 and the electromagnetic decay of X(1835)→2γX(1835) \to 2\gamma in the framework of effective Lagrangian formalism. In the present investigation we have included the contributions from the iso-singlet light scalar resonances but we have not included the isospin violating effect. Our result for the strong decay of X(1835)→η′π+π−X(1835) \to \eta^{\prime} \pi^+ \pi^- is smaller than the observed data. The decay width for the radiative decay of X(1835)→2γX(1835) \to 2\gamma is consistent with the assumption that it decays through the glueball. In addition, the width for the strong decay of X(1835)→ηπ+π−X(1835) \to \eta \pi^+ \pi^- is larger than that of the strong decay of X(1835)→η′π+π−X(1835) \to \eta^{\prime} \pi^+ \pi^- due to the large phase space and coupling constant gNNˉηg_{N\bar{N}\eta}. From our investigation, it is not possible to interpret X(1835) as a baryonium.Comment: Corrected typo
    • …
    corecore