2,579 research outputs found

    Gasification Of Oil Palm Biomass In Hot Compressed Water (HCW) For Production Of Synthesis Gas.

    Get PDF
    Kaedah penggasan gentian tandan buah kosong kelapa sawit dalam air panas termampat dikaji secara berkelompok menggunakan reaktor autoklaf bertekanan tinggi. The study on the HCW gasification of the oil palm empty fruit bunch (EFB) fibers was investigated in a batch system using a high-pressure autoclave reactor

    Extracellular signal-regulated kinases mediate the enhancing effects of inflammatory mediators on resurgent currents in dorsal root ganglion neurons

    Get PDF
    Previously we reported that a group of inflammatory mediators significantly enhanced resurgent currents in dorsal root ganglion neurons. To understand the underlying intracellular signaling mechanism, we investigated the effects of inhibition of extracellular signal-regulated kinases and protein kinase C on the enhancing effects of inflammatory mediators on resurgent currents in rat dorsal root ganglion neurons. We found that the extracellular signal-regulated kinases inhibitor U0126 completely prevented the enhancing effects of the inflammatory mediators on both Tetrodotoxin-sensitive and Tetrodotoxin-resistant resurgent currents in both small and medium dorsal root ganglion neurons. U0126 substantially reduced repetitive firing in small dorsal root ganglion neurons exposed to inflammatory mediators, consistent with prevention of resurgent current amplitude increases. The protein kinase C inhibitor Bisindolylmaleimide I also showed attenuating effects on resurgent currents, although to a lesser extent compared to extracellular signal-regulated kinases inhibition. These results indicate a critical role of extracellular signal-regulated kinases signaling in modulating resurgent currents and membrane excitability in dorsal root ganglion neurons treated with inflammatory mediators. It is also suggested that targeting extracellular signal-regulated kinases-resurgent currents might be a useful strategy to reduce inflammatory pain

    Examining the Impact of the Walking School Bus With an Agent-Based Model

    Get PDF
    We used an agent-based model to examine the impact of the walking school bus (WSB) on children’s active travel to school. We identified a synergistic effect of the WSB with other intervention components such as an educational campaign designed to improve attitudes toward active travel to school. Results suggest that to maximize active travel to school, children should arrive on time at “bus stops” to allow faster WSB walking speeds. We also illustrate how an agent-based model can be used to identify the location of routes maximizing the effects of the WSB on active travel. Agent-based models can be used to examine plausible effects of the WSB on active travel to school under various conditions and to identify ways of implementing the WSB that maximize its effectiveness

    亜臨界水と超臨界水におけるリグニンの分解:反応経路、メカニズム、反応特性の解明

    Get PDF
    内容の要約広島大学(Hiroshima University)博士(工学)Engineeringdoctora

    Dysregulated methylation at imprinted genes in prostate tumor tissue detected by methylation microarray.

    Get PDF
    BACKGROUND: Imprinting is an important epigenetic regulator of gene expression that is often disrupted in cancer. While loss of imprinting (LOI) has been reported for two genes in prostate cancer (IGF2 and TFPI2), disease-related changes in methylation across all imprinted gene regions has not been investigated. METHODS: Using an Illumina Infinium Methylation Assay, we analyzed methylation of 396 CpG sites in the promoter regions of 56 genes in a pooled sample of 12 pairs of prostate tumor and adjacent normal tissue. Selected LOI identified from the array was validated using the Sequenom EpiTYPER assay for individual samples and further confirmed by expression data from publicly available datasets. RESULTS: Methylation significantly increased in 52 sites and significantly decreased in 17 sites across 28 unique genes (P \u3c 0.05), and the strongest evidence for loss of imprinting was demonstrated in tumor suppressor genes DLK1, PLAGL1, SLC22A18, TP73, and WT1. Differential expression of these five genes in prostate tumor versus normal tissue using array data from a publicly available database were consistent with the observed LOI patterns, and WT1 hypermethylation was confirmed using quantitative DNA methylation analysis. CONCLUSIONS: Together, these findings suggest a more widespread dysregulation of genetic imprinting in prostate cancer than previously reported and warrant further investigation

    Use of graphene as protection film in biological environments

    Get PDF
    Corrosion of metal in biomedical devices could cause serious health problems to patients. Currently ceramics coating materials used in metal implants can reduce corrosion to some extent with limitations. Here we proposed graphene as a biocompatible protective film for metal potentially for biomedical application. We confirmed graphene effectively inhibits Cu surface from corrosion in different biological aqueous environments. Results from cell viability tests suggested that graphene greatly eliminates the toxicity of Cu by inhibiting corrosion and reducing the concentration of Cu(2+) ions produced. We demonstrated that additional thiol derivatives assembled on graphene coated Cu surface can prominently enhance durability of sole graphene protection limited by the defects in graphene film. We also demonstrated that graphene coating reduced the immune response to metal in a clinical setting for the first time through the lymphocyte transformation test. Finally, an animal experiment showed the effective protection of graphene to Cu under in vivo condition. Our results open up the potential for using graphene coating to protect metal surface in biomedical application

    Influence of Summer Biogeography on Wood Warbler Stopover Abundance

    Get PDF
    We evaluated the effect of summer biogeography of migrant wood warblers (Parulidae) on their stopover abundance. To characterize abundance patterns, we used mistnet capture data from spring and fall migration in the Middle Rio Grande Valley, New Mexico, spring migration on the Gulf Coast of Louisiana, and fall migration on the Gulf Coast of Alabama. To describe the summer biogeography of 47 species of wood warblers, we used indices of their summer range size, their summer density, and distance between their summer ranges and our netting sites. Multiple linear regressions indicated that biogeographic indices explained 55% and 49% of variation in captures in the Middle Rio Grande Valley during spring and fall, respectively. On the Gulf Coast these regressions explained 25% of the variation during spring at the Louisiana site and 51% during fall at the Alabama site. Both summer range size and distance between the summer range and study sites explained significant portions of the variation in three of the four analyses. Interestingly, the importance of biogeographic factors was least evident among spring migrants along the Gulf Coast of Louisiana. The difference between this site and other sites may reflect differences between migrants arriving after a Gulf crossing and those migrating across continental land masses or possibly an increased importance of winter biogeography for migrants crossing the Gulf of Mexico in the spring. In general, these results indicate that abundance of migrant warblers at our netting sites in both the eastern and western United States during spring and fall migration were influenced by summer biogeography. Consequently, we suggest including biogeographic analyses in assessments of conservation priorities for local stopover sites

    Potential of nanofiltration and reverse osmosis processes for the recovery of high-concentrated furfural streams

    Get PDF
    Furfural is an interesting compound that can be produced from renewable and sustainable resources and is used in platform chemicals for the synthesis of biofuels and other chemicals. However, a recovery step is required to separate furfural from lignocellulosic hydrolysates when cellulose-based raw materials are used. In this work, nanofiltration (NF) and reverse osmosis (RO) processes have been evaluated to purify or concentrate synthetic furfural solutions.Postprint (author's final draft

    Protein kinase C enhances human sodium channel hNav1.7 resurgent currents via a serine residue in the domain III-IV linker

    Get PDF
    Resurgent sodium currents likely play a role in modulating neuronal excitability. Here we studied whether protein kinase C (PKC) activation can increase resurgent currents produced by the human sodium channel hNav1.7. We found that a PKC agonist significantly enhanced hNav1.7-mediated resurgent currents and this was prevented by PKC antagonists. The enhancing effects were replicated by two phosphorylation-mimicking mutations and were prevented by a phosphorylation-deficient mutation at a conserved PKC phosphorylation site (Serine 1479). Our results suggest that PKC can increase sodium resurgent currents through phosphorylation of a conserved Serine residue located in the domain III-IV linker of sodium channels

    Sex Differences in Nociceptin/Orphanin FQ Peptide Receptor-Mediated Pain and Anxiety Symptoms in a Preclinical Model of Post-traumatic Stress Disorder

    Get PDF
    Nociceptin/Orphanin FQ (N/OFQ) is a neuropeptide that modulates pain transmission, learning/memory, stress, anxiety, and fear responses via activation of the N/OFQ peptide (NOP or ORL1) receptor. Post-traumatic stress disorder (PTSD) is an anxiety disorder that may arise after exposure to a traumatic or fearful event, and often is co-morbid with chronic pain. Using an established animal model of PTSD, single-prolonged stress (SPS), we were the first to report that NOP receptor antagonist treatment reversed traumatic stress-induced allodynia, thermal hyperalgesia, and anxiety-like behaviors in male Sprague-Dawley rats. NOP antagonist treatment also reversed SPS-induced serum and CSF N/OFQ increase and circulating corticosterone decrease. The objective of this study was to examine the role of the NOP receptor in male and female rats subjected to traumatic stress using Wistar wild type (WT) and NOP receptor knockout (KO) rats. The severity of co-morbid allodynia was assessed as change in paw withdrawal threshold (PWT) to von Frey and paw withdrawal latency (PWL) to radiant heat stimuli, respectively. PWT and PWL decreased in male and female WT rats within 7 days after SPS, and remained decreased through day 28. Baseline sensitivity did not differ between genotypes. However, while male NOP receptor KO rats were protected from SPS-induced allodynia and thermal hypersensitivity, female NOP receptor KO rats exhibited tactile allodynia and thermal hypersensitivity to the same extent as WT rats. Male NOP receptor KO rats had a lower anxiety index (AI) than WT, but SPS did not increase AI in WT males. In contrast, SPS significantly increased AI in WT and NOP receptor KO female rats. SPS increased circulating N/OFQ levels in male WT, but not in male NOP receptor KO, or WT or KO female rats. These results indicate that the absence of the NOP receptor protects males from traumatic-stress-induced allodynia and hyperalgesia, consistent with our previous findings utilizing a NOP receptor antagonist. However, female NOP receptor KO rats experience allodynia, hyperalgesia and anxiety-like symptoms to the same extent as WT females following SPS. This suggests that endogenous N/OFQ-NOP receptor signaling plays an important, but distinct, role in males and females following exposure to traumatic stress
    corecore