21 research outputs found

    Disease Knowledge Transfer across Neurodegenerative Diseases

    Get PDF
    We introduce Disease Knowledge Transfer (DKT), a novel technique for transferring biomarker information between related neurodegenerative diseases. DKT infers robust multimodal biomarker trajectories in rare neurodegenerative diseases even when only limited, unimodal data is available, by transferring information from larger multimodal datasets from common neurodegenerative diseases. DKT is a joint-disease generative model of biomarker progressions, which exploits biomarker relationships that are shared across diseases. Our proposed method allows, for the first time, the estimation of plausible, multimodal biomarker trajectories in Posterior Cortical Atrophy (PCA), a rare neurodegenerative disease where only unimodal MRI data is available. For this we train DKT on a combined dataset containing subjects with two distinct diseases and sizes of data available: 1) a larger, multimodal typical AD (tAD) dataset from the TADPOLE Challenge, and 2) a smaller unimodal Posterior Cortical Atrophy (PCA) dataset from the Dementia Research Centre (DRC), for which only a limited number of Magnetic Resonance Imaging (MRI) scans are available. Although validation is challenging due to lack of data in PCA, we validate DKT on synthetic data and two patient datasets (TADPOLE and PCA cohorts), showing it can estimate the ground truth parameters in the simulation and predict unseen biomarkers on the two patient datasets. While we demonstrated DKT on Alzheimer's variants, we note DKT is generalisable to other forms of related neurodegenerative diseases. Source code for DKT is available online: https://github.com/mrazvan22/dkt.Comment: accepted at MICCAI 2019, 13 pages, 5 figures, 2 table

    Scene perception in posterior cortical atrophy: categorization, description and fixation patterns.

    Get PDF
    Partial or complete Balint's syndrome is a core feature of the clinico-radiological syndrome of posterior cortical atrophy (PCA), in which individuals experience a progressive deterioration of cortical vision. Although multi-object arrays are frequently used to detect simultanagnosia in the clinical assessment and diagnosis of PCA, to date there have been no group studies of scene perception in patients with the syndrome. The current study involved three linked experiments conducted in PCA patients and healthy controls. Experiment 1 evaluated the accuracy and latency of complex scene perception relative to individual faces and objects (color and grayscale) using a categorization paradigm. PCA patients were both less accurate (faces < scenes < objects) and slower (scenes < objects < faces) than controls on all categories, with performance strongly associated with their level of basic visual processing impairment; patients also showed a small advantage for color over grayscale stimuli. Experiment 2 involved free description of real world scenes. PCA patients generated fewer features and more misperceptions than controls, though perceptual errors were always consistent with the patient's global understanding of the scene (whether correct or not). Experiment 3 used eye tracking measures to compare patient and control eye movements over initial and subsequent fixations of scenes. Patients' fixation patterns were significantly different to those of young and age-matched controls, with comparable group differences for both initial and subsequent fixations. Overall, these findings describe the variability in everyday scene perception exhibited by individuals with PCA, and indicate the importance of exposure duration in the perception of complex scenes

    Revealing Individual Neuroanatomical Heterogeneity in Alzheimer Disease Using Neuroanatomical Normative Modeling

    No full text
    BACKGROUND AND OBJECTIVES: Alzheimer's Disease (AD) is highly heterogeneous, with marked individual differences in clinical presentation and neurobiology. To explore this, we employed neuroanatomical normative modelling to index regional patterns of variability in cortical thickness. We aimed to characterise individual differences and outliers in cortical thickness in patients with AD, people with mild cognitive impairment (MCI) and controls. Furthermore, we assessed the relationships between cortical thickness heterogeneity and cognitive function, amyloid-beta, phosphor-tau, ApoE genotype. Finally, we examined whether cortical thickness heterogeneity was predictive of conversion from MCI to AD. METHODS: Cortical thickness measurements across 148 brain regions were obtained from T1-weighted MRI scans from 62 sites of the Alzheimer's Disease Neuroimaging Initiative. AD was determined by clinical and neuropsychological examination with no comorbidities present. MCI participants had reported memory complaints, and controls were cognitively normal. A neuroanatomical normative model indexed cortical thickness distributions using a separate healthy reference dataset (n= 33,072), employing hierarchical Bayesian regression to predict cortical thickness per region using age and sex, whilst adjusting for site noise. Z-scores per region were calculated, resulting in a z-score 'brain map' per participant. Regions with z-scores <-1.96 were classified as outliers. RESULTS: Patients with AD (n=206) had a median of 12 outlier regions (out of a possible 148), with the highest proportion of outliers (47%) in the parahippocampal gyrus. For 62 regions, over 90% of these patients had cortical thicknesses within the normal range. Patients with AD had more outlier regions than people with MCI (n=662) or controls (n=159) [F(2, 1022) = 95.39), P = 2.0×10 -16]. They were also more dissimilar to each other than people with MCI or controls [F(2, 1024) = 209.42, P = 2.2×10 -16]. A greater number of outlier regions was associated with worse cognitive function, CSF protein concentrations and an increased risk of converting from MCI to AD within three years (HR = 1.028, 95% CI[1.016,1.039], P =1.8×10 -16). DISCUSSION: Individualised normative maps of cortical thickness highlight the heterogeneous impact of AD on the brain. Regional outlier estimates have the potential to be a marker of disease and could be used to track an individual's disease progression or treatment response in clinical trials

    Scene perception in Posterior Cortical Atrophy: categorisation, description and fixation patterns

    No full text
    Partial or complete Balint’s syndrome is a core feature of the clinico-radiological syndrome of posterior cortical atrophy (PCA), in which individuals experience a progressive deterioration of cortical vision. Although multi-object arrays are frequently used to detect simultanagnosia in the clinical assessment and diagnosis of PCA, to date there have been no group studies of scene perception in patients with the syndrome. The current study involved three linked experiments conducted in PCA patients and healthy controls. Experiment 1 evaluated the accuracy and latency of complex scene perception relative to individual faces and objects (colour and greyscale) using a categorisation paradigm. PCA patients were both less accurate (faces&lt;scenes&lt;objects) and slower (scenes&lt;objects&lt;faces) than controls on all categories, with performance strongly associated with their level of basic visual processing impairment; patients also showed a small advantage for colour over greyscale stimuli. Experiment 2 involved free description of real world scenes. PCA patients generated fewer features and more misperceptions than controls, though perceptual errors were always consistent with the patient’s global understanding of the scene (whether correct or not). Experiment 3 used eye tracking measures to compare patient and control eye movements over initial and subsequent fixations of scenes. Patients’ fixation patterns were significantly different to those of young and age-matched controls, with comparable group differences for both initial and subsequent fixations. Overall, these findings describe the variability in everyday scene perception exhibited by individuals with PCA, and indicate the importance of exposure duration in the perception of complex scenes

    Correction to: Diagnosis and Management of Posterior Cortical Atrophy (Current Treatment Options in Neurology, (2023), 25, 2, (23-43), 10.1007/s11940-022-00745-0)

    No full text
    The author found out 2 errors in the proof that needs to be updated. 1. Author degrees Jonathan Graff-Radford, MD Gil D. Rabinovici, MD Jonathan M. Schott, MD, FRCP 2. Formatting in pdf version The author noticed that the following line is formatted differently (underlined) in the pdf version of the article which should be removed. Establishing driving safety is critically important early on as most people with PCA will not be fit to drive [10••] The original article has been corrected
    corecore