95 research outputs found

    Disease Knowledge Transfer across Neurodegenerative Diseases

    Get PDF
    We introduce Disease Knowledge Transfer (DKT), a novel technique for transferring biomarker information between related neurodegenerative diseases. DKT infers robust multimodal biomarker trajectories in rare neurodegenerative diseases even when only limited, unimodal data is available, by transferring information from larger multimodal datasets from common neurodegenerative diseases. DKT is a joint-disease generative model of biomarker progressions, which exploits biomarker relationships that are shared across diseases. Our proposed method allows, for the first time, the estimation of plausible, multimodal biomarker trajectories in Posterior Cortical Atrophy (PCA), a rare neurodegenerative disease where only unimodal MRI data is available. For this we train DKT on a combined dataset containing subjects with two distinct diseases and sizes of data available: 1) a larger, multimodal typical AD (tAD) dataset from the TADPOLE Challenge, and 2) a smaller unimodal Posterior Cortical Atrophy (PCA) dataset from the Dementia Research Centre (DRC), for which only a limited number of Magnetic Resonance Imaging (MRI) scans are available. Although validation is challenging due to lack of data in PCA, we validate DKT on synthetic data and two patient datasets (TADPOLE and PCA cohorts), showing it can estimate the ground truth parameters in the simulation and predict unseen biomarkers on the two patient datasets. While we demonstrated DKT on Alzheimer's variants, we note DKT is generalisable to other forms of related neurodegenerative diseases. Source code for DKT is available online: https://github.com/mrazvan22/dkt.Comment: accepted at MICCAI 2019, 13 pages, 5 figures, 2 table

    Revealing Individual Neuroanatomical Heterogeneity in Alzheimer Disease Using Neuroanatomical Normative Modeling

    Get PDF
    BACKGROUND AND OBJECTIVES: Alzheimer's Disease (AD) is highly heterogeneous, with marked individual differences in clinical presentation and neurobiology. To explore this, we employed neuroanatomical normative modelling to index regional patterns of variability in cortical thickness. We aimed to characterise individual differences and outliers in cortical thickness in patients with AD, people with mild cognitive impairment (MCI) and controls. Furthermore, we assessed the relationships between cortical thickness heterogeneity and cognitive function, amyloid-beta, phosphor-tau, ApoE genotype. Finally, we examined whether cortical thickness heterogeneity was predictive of conversion from MCI to AD. METHODS: Cortical thickness measurements across 148 brain regions were obtained from T1-weighted MRI scans from 62 sites of the Alzheimer's Disease Neuroimaging Initiative. AD was determined by clinical and neuropsychological examination with no comorbidities present. MCI participants had reported memory complaints, and controls were cognitively normal. A neuroanatomical normative model indexed cortical thickness distributions using a separate healthy reference dataset (n= 33,072), employing hierarchical Bayesian regression to predict cortical thickness per region using age and sex, whilst adjusting for site noise. Z-scores per region were calculated, resulting in a z-score 'brain map' per participant. Regions with z-scores <-1.96 were classified as outliers. RESULTS: Patients with AD (n=206) had a median of 12 outlier regions (out of a possible 148), with the highest proportion of outliers (47%) in the parahippocampal gyrus. For 62 regions, over 90% of these patients had cortical thicknesses within the normal range. Patients with AD had more outlier regions than people with MCI (n=662) or controls (n=159) [F(2, 1022) = 95.39), P = 2.0Ă—10-16]. They were also more dissimilar to each other than people with MCI or controls [F(2, 1024) = 209.42, P = 2.2Ă—10-16]. A greater number of outlier regions was associated with worse cognitive function, CSF protein concentrations and an increased risk of converting from MCI to AD within three years (HR = 1.028, 95% CI[1.016,1.039], P =1.8Ă—10-16). DISCUSSION: Individualised normative maps of cortical thickness highlight the heterogeneous impact of AD on the brain. Regional outlier estimates have the potential to be a marker of disease and could be used to track an individual's disease progression or treatment response in clinical trials

    Effects of the visual environment on object localization in posterior cortical atrophy and typical Alzheimer's disease

    Get PDF
    Introduction: Visual processing deficits in Alzheimer's disease are associated with diminished functional independence. While environmental adaptations have been proposed to promote independence, recent guidance gives limited consideration to such deficits and offers conflicting recommendations for people with dementia. We evaluated the effects of clutter and color contrasts on performances of everyday actions in posterior cortical atrophy and memory-led typical Alzheimer's disease. Methods: 15 patients with posterior cortical atrophy, 11 with typical Alzheimer's disease and 16 healthy controls were asked to pick up a visible target object as part of two pilot repeated-measures investigations from a standing or seated position. Participants picked up the target within a controlled real-world setting under varying environmental conditions: with/without clutter, with/without color contrast cue and far/near target position. Task completion time was recorded using a target-mounted inertial measurement unit. Results: Across both experiments, difficulties locating a target object were apparent through patient groups taking an estimated 50–90% longer to pick up targets relative to controls. There was no evidence of effects of color contrast when locating objects from standing/seated positions and of any other environmental conditions from a standing position on completion time in any participant group. Locating objects, surrounded by five distractors rather than none, from a seated position was associated with a disproportionately greater effect on completion times in the posterior cortical atrophy group relative to the control or typical Alzheimer's disease groups. Smaller, not statistically significant but directionally consistent, ratios of relative effects were seen for two distractors compared with none. Discussion: Findings are consistent with inefficient object localization in posterior cortical atrophy relative to typical Alzheimer's disease and control groups, particularly with targets presented within reaching distance among visual clutter. Findings may carry implications for considering the adverse effects of visual clutter in developing and implementing environmental modifications to promote functional independence in Alzheimer's disease

    Eyetracking metrics reveal impaired spatial anticipation in behavioural variant frontotemporal dementia.

    Get PDF
    Eyetracking technology has had limited application in the dementia field to date, with most studies attempting to discriminate syndrome subgroups on the basis of basic oculomotor functions rather than higher-order cognitive abilities. Eyetracking-based tasks may also offer opportunities to reduce or ameliorate problems associated with standard paper-and-pencil cognitive tests such as the complexity and linguistic demands of verbal test instructions, and the problems of tiredness and attention associated with lengthy tasks that generate few data points at a slow rate. In the present paper we adapted the Brixton spatial anticipation test to a computerized instruction-less version where oculomotor metrics, rather than overt verbal responses, were taken into account as indicators of high level cognitive functions. Twelve bvFTD (in whom spatial anticipation deficits were expected), six SD patients (in whom deficits were predicted to be less frequent) and 38 healthy controls were presented with a 10 Ă— 7 matrix of white circles. During each trial (N = 24) a black dot moved across seven positions on the screen, following 12 different patterns. Participants' eye movements were recorded. Frequentist statistical analysis of standard eye movement metrics were complemented by a Bayesian machine learning (ML) approach in which raw eyetracking time series datasets were examined to explore the ability to discriminate diagnostic group performance not only on the overall performance but also on individual trials. The original pen and paper Brixton test identified a spatial anticipation deficit in 7/12 (58%) of bvFTD and in 2/6 (33%) of SD patients. The eyetracking frequentist approach reported the deficit in 11/12 (92%) of bvFTD and in none (0%) of the SD patients. The machine learning approach had the main advantage of identifying significant differences from controls in 24/24 individual trials for bvFTD patients and in only 12/24 for SD patients. Results indicate that the fine grained rich datasets obtained from eyetracking metrics can inform us about high level cognitive functions in dementia, such as spatial anticipation. The ML approach can help identify conditions where subtle deficits are present and, potentially, contribute to test optimisation and the reduction of testing times. The absence of instructions also favoured a better distinction between different clinical groups of patients and can help provide valuable disease-specific markers

    Augmenting dementia cognitive assessment with instruction-less eye-tracking tests

    Get PDF
    © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Eye-tracking technology is an innovative tool that holds promise for enhancing dementia screening. In this work, we introduce a novel way of extracting salient features directly from the raw eye-tracking data of a mixed sample of dementia patients during a novel instruction-less cognitive test. Our approach is based on self-supervised representation learning where, by training initially a deep neural network to solve a pretext task using well-defined available labels (e.g. recognising distinct cognitive activities in healthy individuals), the network encodes high-level semantic information which is useful for solving other problems of interest (e.g. dementia classification). Inspired by previous work in explainable AI, we use the Layer-wise Relevance Propagation (LRP) technique to describe our network's decisions in differentiating between the distinct cognitive activities. The extent to which eye-tracking features of dementia patients deviate from healthy behaviour is then explored, followed by a comparison between self-supervised and handcrafted representations on discriminating between participants with and without dementia. Our findings not only reveal novel self-supervised learning features that are more sensitive than handcrafted features in detecting performance differences between participants with and without dementia across a variety of tasks, but also validate that instruction-less eye-tracking tests can detect oculomotor biomarkers of dementia-related cognitive dysfunction. This work highlights the contribution of self-supervised representation learning techniques in biomedical applications where the small number of patients, the non-homogenous presentations of the disease and the complexity of the setting can be a challenge using state-of-the-art feature extraction methods.Peer reviewe

    Unusual Pattern of Reading Errors in a Patient with Posterior Cortical Atrophy

    Get PDF
    Posterior cortical atrophy (PCA) is a degenerative condition characterized by a progressive deterioration of visual processing. Dyslexia constitutes an early and frequent visual symptom of the disease and previous comprehensive investigations in series of individuals have extensively documented a characteristic abundance of visual errors as the most prevalent error category in this population. Here we describe the profile of a patient with PCA, C.P., who presents an unusual prevalence of phonological, instead of purely visual, errors in his reading, in the context of an otherwise classic PCA phenotype. In keeping with the well-known PCA profile, C.P. exhibited deficits at the pre-lexical level with elements of crowding and defective early visual processing impairments but additionally showed an unusually prominent disruption of phonological processing. We also argue that our patient may have a refractory access type deficit in reading given that accuracy doubled with the introduction of a five-second response-stimulus interval. To our knowledge, no previous case of a refractory deficit affecting word reading has been reported in PCA. Our examination builds on previous knowledge about reading behaviour in PCA and describes a singular example of the rich phenotypic heterogeneity within the syndrome

    Challenges in public perception: Highlights from the United Kingdom-Brazil dementia workshop

    Get PDF
    In July 2019, Belo Horizonte hosted an international workshop for 27 junior researchers, whose participants were from Brazil and the United Kingdom. This 3-day meeting organized by the Federal University of Minas Gerais and the University of East Anglia addressed challenges in cognitive impairment and dementia, with particular interest in public perceptions, diagnosis and care management. The purpose of this report is to highlight the outcomes of the above-mentioned workshop regarding the topic of public perceptions (part I). Discussions focused on differences and similarities between countries, as well as identifying main issues to that required collaborative and creative solutions for them. After these group discussions, four core themes emerged: I) Cognitive impairment; II) Dementia – Beyond Alzheimer’s Disease; III) Prevention; and IV) Stigma. National and international initiatives to deal with public misperceptions about cognitive impairment and dementia are discussed

    Detection and localisation of hesitant steps in people with Alzheimer's disease navigating routes of varying complexity.

    Get PDF
    People with Alzheimer's disease (AD) have characteristic problems navigating everyday environments. While patients may exhibit abnormal gait parameters, adaptive gait irregularities when navigating environments are little explored or understood. The aim of this study was to assess adaptive locomotor responses of AD subjects in a complex environment requiring spatial navigation. A controlled environment of three corridors was set up: straight (I), U-shaped (U) and dog-leg (S). Participants were asked to walk along corridors as part of a counterbalanced repeated-measures design. Three groups were studied: 11 people with posterior cortical atrophy (PCA), 10 with typical Alzheimer's disease (tAD) and 13 controls. Spatio-temporal gait parameters and position within the corridors were monitored with shoe-mounted inertial measurement units (IMUs). Hesitant steps were identified from statistical analysis of the distribution of step time data. Walking paths were generated from position data calculated by double integration of IMU acceleration. People with PCA and tAD had similar gait characteristics, having shorter steps and longer step times than controls. Hesitant steps tended to be clustered within certain regions of the walking paths. IMUs enabled identification of key gait characteristics in this clinical population (step time, length and step hesitancy) and environmental conditions (route complexity) modifying their expression
    • …
    corecore