21 research outputs found

    Carrier Formation Dynamics in Prototypical Organic Solar Cells as Investigated by Transient Absorption Spectroscopy

    Get PDF
    Subpicosecond transient absorption spectroscopy is a powerful tool used to clarify the exciton and carrier dynamics within the organic solar cells (OSCs). In this review article, we introduce a method to determine the absolute numbers of the excitons and carriers against delay time (t) only from the photoinduced absorption (PIA) and electrochemically induced absorption (EIA) spectra. Application of this method to rr-P3HT-, PTB7-, and SMDPPEH-based OSCs revealed common aspects of the carrier formation dynamics. First, the temporal evolution of the numbers of the excitons and carriers indicates that the late decay component of exciton does not contribute to the carrier formation process. This is probably because the late component has not enough excess energy to separate into the electron and hole across the donor/acceptor (D/A) interface. Secondly, the spectroscopy revealed that the exciton-to-carrier conversion process is insensitive to temperature. This observation, together with the fast carrier formation time in OSCs, is consistent with the hot exciton picture

    Carrier Formation Dynamics in Prototypical Organic Solar Cells as Investigated by Transient Absorption Spectroscopy

    Get PDF
    Subpicosecond transient absorption spectroscopy is a powerful tool used to clarify the exciton and carrier dynamics within the organic solar cells (OSCs). In this review article, we introduce a method to determine the absolute numbers of the excitons and carriers against delay time (t) only from the photoinduced absorption (PIA) and electrochemically induced absorption (EIA) spectra. Application of this method to rr-P3HT-, PTB7-, and SMDPPEH-based OSCs revealed common aspects of the carrier formation dynamics. First, the temporal evolution of the numbers of the excitons and carriers indicates that the late decay component of exciton does not contribute to the carrier formation process. This is probably because the late component has not enough excess energy to separate into the electron and hole across the donor/acceptor (D/A) interface. Secondly, the spectroscopy revealed that the exciton-to-carrier conversion process is insensitive to temperature. This observation, together with the fast carrier formation time in OSCs, is consistent with the hot exciton picture

    Spectroscopic Determination of Charge Formation Efficiency of Organic Photovoltaic Cells

    Get PDF
    The internal quantum efficiency (ΦIQ) of an organic photovoltaic (OPV) cell is governed by plural processes, i.e., the carrier formation process at the D/A interface and the carrier transfer process toward the collector electrode. Then, ΦIQ can be decomposed into the carrier formation (ΦCF) and carrier transfer efficiencies (ΦCT). By combination of femtosecond time-resolved and electrochemical spectroscopies, we determined absolute values of ΦCF of F8T2/PC71BM, P3HT/PCBM, and PTB7/PC71BM solar cells. We found that ΦCF at 400 nm of the F8T2/PC71BM cell is higher than those of the P3HT/PCBM, and PTB7/PC71BM cells, although ΦIQ at 400 nm is the lowest

    Fullerene mixing effect on carrier formation in bulk-hetero organic solar cell

    Get PDF
    Organic solar cells (OSCs) with a bulk-heterojunction (BHJ) are promising energy conversion devices, because they are flexible and environmental-friendly, and can be fabricated by low-cost roll-to-roll process. Here, we systematically investigated the interrelations between photovoltaic properties and the domain morphology of the active layer in OSCs based on films of poly-(9,9-dioctylfluorene-co-bithiophene) (F8T2)/[6,6]-phenyl C71-butyric acid methyl ester (PC71BM) blend annealed at various temperatures (Tan). The scanning transmission X-ray microscopy (STXM) revealed that fullerene mixing (ΦFullerene) in the polymer matrix decreases with increase in Tan while the domain size (L) is nearly independent of Tan. The TEM-S mapping image suggests that the polymer matrix consist of polymer clusters of several nm and fullerene. We found that the charge formation efficiency (ΦCF), internal quantum efficiency (ΦIQ), and power conversion efficiency (PCE) are dominantly determined by ΦFullerene. We interpreted these observations in terms of the polymer clusters within the polymer matrix

    Morphology of F8T2/PC71BM Blend Film as Investigated by Scanning Transmission X-ray Microscope (STXM)

    Get PDF
    Clarification of the morphology of bulk heterojunction (BHJ) is indispensable for true comprehension of the organic solar cells. Here, we performed scanning transmission X-ray microscopy (STXM) for a poly-(9,9-dioctylfluorene-co-bithiophene) (F8T2)/[6,6]-phenyl C71-butyric acid methyl ester (PC71BM) blend film annealed at various temperatures (Tan). We found that the fullerene concentration within the polymer-rich domain decreases with Tan while the domain size (∼230 nm) is essentially unchanged. We will discuss the interrelation between the film morphology and the photovoltaic performance

    Bortezomib-cyclophosphamide-dexamethasone induction/consolidation and bortezomib maintenance for transplant-eligible newly diagnosed multiple myeloma: phase 2 multicenter trial

    Get PDF
    [Objectives:] We conducted a phase II trial to prospectively evaluate the efficacy and safety of bortezomib-cyclophosphamide-dexamethasone (VCD) induction, autologous stem cell transplantation (ASCT), VCD consolidation, and bortezomib maintenance in transplant-eligible newly diagnosed multiple myeloma (NDMM) patients in Japan (UMIN000010542). [Methods:] From 2013 to 2016, 42 patients with a median age of 58 (range 42–65) years with NDMM were enrolled in 15 centers. The primary endpoint was the complete response (CR) /stringent CR (sCR) rate after transplantation, and overall/progression-free survival rates were also evaluated. [Results:] Following induction therapy, the overall response rate was obtained in 71% of patients, including a CR/sCR of 10% and a very good partial response (VGPR) of 26%. Twenty-six of the 42 patients completed ASCT following the protocol and CR/sCR and VGPR rate 100 days after ASCT was 26% and 17%, respectively. During consolidation therapy, 3 of the 24 patients achieved deeper responses. Eight of the 18 patients completed 2-year bortezomib maintenance without disease progression and grade 3/4 toxicities. Five patients were VGPR or partial response after ASCT but maintained response with 2-year bortezomib maintenance. Two-year overall and progression-free survival rates were 92.5% (95% confidence interval [CI]: 78.5%−97.5%) and 62.6% (95% CI: 45.8%−75.5%), respectively. Grade 3/4 toxicities (≥ 10%) included neutropenia (19%) and anemia (17%) in induction, and thrombocytopenia (29%) in consolidation. [Conclusion:] VCD induction/consolidation and bortezomib maintenance with ASCT for NDMM resulted in a high CR/sCR rate and provided good overall/progression-free survival in Japan
    corecore