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Subpicosecond transient absorption spectroscopy is a powerful tool used to clarify the exciton and carrier dynamics within the
organic solar cells (OSCs). In this review article, we introduce a method to determine the absolute numbers of the excitons and
carriers against delay time (t) only from the photoinduced absorption (PIA) and electrochemically induced absorption (EIA)
spectra. Application of this method to rr-P3HT-, PTB7-, and SMDPPEH-based OSCs revealed common aspects of the carrier
formation dynamics. First, the temporal evolution of the numbers of the excitons and carriers indicates that the late decay
component of exciton does not contribute to the carrier formation process. This is probably because the late component has not
enough excess energy to separate into the electron and hole across the donor/acceptor (D/A) interface. Secondly, the spectroscopy
revealed that the exciton-to-carrier conversion process is insensitive to temperature.This observation, together with the fast carrier
formation time in OSCs, is consistent with the hot exciton picture.

1. Introduction

1.1. Exciton-Carrier Conversion in Organic Solar Cells.
Organic solar cells (OSCs) with bulk heterojunction (BHJ)
[1–4] are promising energy conversion devices with high
power conversion efficiency (PCE > 10% [5]), flexibility, and
low-cost production process, for example, the roll-to-role
process. The BHJ active layer, which consists of phase-
separated nanosize domains of the donor (D) and accep-
tor (A) materials, efficiently absorbs the solar energy and
converts it to the electric energy. The BHJ layer is easily
prepared by the spin-coating from an organic solvent and the
appropriate thermal annealing. In some cases, an additive,
for example, diiodooctane (DIO), in the organic solvent is
effective in obtaining a fine domain structure [6]. In the actual
OSCs, the active layer is sandwiched between an Al cathode
and an indium tin oxide (ITO) transparent anode. The ITO
electrode is used as an optical window.

Significant feature of the OSCs is that Frenkel-type
exciton with a high binding energy is stable even at room
temperature, reflecting the small dielectric constant (𝜀 = 2-3)
[7, 8]. Then, the photoexcitation creates donor exciton (D∗)
in the donor domain or acceptor exciton (A∗) in the acceptor
domains.The photovoltaic effect is realized by the conversion
process from exciton to carrier. This is in a sharp contrast
with inorganic solar cells (ISCs), inwhich the photoexcitation
directly creates free carriers in the active layer. Figure 1
schematically shows the exciton-carrier conversion process
around D/A interface. The photoirradiation directly creates
excitons in the respective domains [(2) exciton formation].
The excitons migrate to the D/A interface [(3) exciton
migration] and dissociate into donor hole (D+) and acceptor
electron (A−) [(4) exciton dissociation]. The exciton disso-
ciation process is the most important issue to comprehend
the photovoltaic effects in OSCs. Importantly, the exciton
migration distance (∼10 nm) is very short in OSCs [9].
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Figure 1: Exciton-carrier conversion process at D/A interface. Molecular structures of prototypical donors and acceptors are shown.

If the domains size is much larger than the migration
distance, most of the excitons recombine before they reach
the D/A interface. Therefore, the nanosize domain structure
of the BHJ layer is indispensable for the efficient carrier
formation process. After the carrier formation, D+ transfers
within the D domain to reach the anode, where the hole
is collected. A− transfers within the A domain to reach the
cathode, where the electron is collected.

Among the exciton-carrier conversion process, (4) exci-
ton dissociation process is still controversial [9–19]. The
Frenkel exciton in organic materials has high binding energy
(=0.2–0.5 eV) due to the electrostatic potential between them.
At the D/A interfaces, the electrons will be transferred to A,
provided that the energy gain overcomes the exciton binding
energy. This requirement is often satisfied by an energetic
offset between the donor and acceptor lowest unoccupied
molecular orbitals (LUMOs). After the electron transfer, the
resulting electron-hole pairs still feel electrostatic potential
between them. Such a bound electron-hole state at D/A inter-
face is known as charge-transfer (CT) state. The CT state was
detected by absorption [20–24], photoluminescence [25–27],
electroluminescence [26, 27], time-resolved/pulsed electron
paramagnetic resonance [28–31], and transient absorption
spectroscopy [32–41]. Importantly, the free carrier forma-
tion from the CT state is very fast, as demonstrated by
transient absorption spectroscopies [32–41]. Hwang et al.
[32] reported that free carriers were generated from the CT
state within a few picoseconds in P3HT/PCBM blend film.
Using sub-20 fs pump-probe spectroscopy,Grancini et al. [41]
observed the generation of free carries within 50 fs in the
PCPDTBT/PCBM blend film.

There exists a long-lasting debate whether the carriers are
generated from the hot CT or relaxed CT state. In the hot
CT picture, the excess energy helps to dissociate the CT states
directly to the free carriers before they reach the relaxed CT

states [42]. In this picture, the primary kinetic competition
is between the energy relaxation and the dissociation of the
hot CT state. The energy relaxation process is usually several
hundred femtoseconds [43]. However, several experimental
results on the internal quantum efficiency (IQE) [44, 45]
are against the hot CT picture. For example, Vandewal et
al. [45] reported that IQE is irrespective of the excitation
energy in the MEH-PPV/PCBM OSC. This data strongly
indicates that free carrier generation is exclusively from the
relaxed CT state rather than from the hot CT state. In this
situation, a new spectroscopic approach is desired to deepen
the understanding of the exciton dissociation.

1.2. Spectroscopic Determination of Absolute Numbers of Pho-
togenerated Species. The transient absorption spectroscopy
is one of the powerful tools used to clarify the dynamics of
the exciton, CT state, and carrier. The spectroscopy has been
applied to the OSCs with BHJ active layers [42, 43, 46–61].
Figure 2 shows schematic diagram of the transient absorption
spectroscopy. The irradiation of the pump light pulse creates
D∗, A∗, D+, and A−. These species cause the photoinduced
absorption (PIA) below the absorption edge, as shown in the
right panels of Figure 2. This PIA is monitored by the probe
light pulse against delay time (t).

Here, let us introduce amethod to determine the absolute
numbers of the excitons and carriers against 𝑡 only from
the photoinduced absorption (PIA) and electrochemically
induced absorption (EIA) spectra. In the latter spectroscopy,
the electrochemically doped carrier causes a characteristic
EIA in the infrared region. In this method, we only consider
the photogenerated exciton and carrier and eliminate mate-
rial dependent assumptions on the spectral interpretation as
much as possible. Then, PIA (𝜙exp) is decomposed into the
respective PIA components, that is, 𝜙D∗ (donor exciton), 𝜙A∗
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Figure 2: Schematic diagram of the transient absorption spectroscopy. Photoexcitation generates donor exciton (D∗), acceptor exciton (A∗),
donor hole (D+), and acceptor electron (A−). Right panel shows energy level diagram for exciton and carrier together with photoinduced
absorption (PIA).

(acceptor exciton), and 𝜙D+A− (carriers). 𝜙D∗ (𝜙A∗) should
be the PIA of the donor (acceptor) neat films at the early
stage after photoexcitation. 𝜙D+A− should be the PIA of the
blend film at the late stage, where photogenerated excitons
completely disappear. We note that 𝜙D+A− is dominated by
the PIA due to D+, because the profile of the late component
significantly depends on the donor material and resembles
that of the EIA of the donor neat film. This suggests that 𝜙A−
is much weaker than 𝜙D+ . The CT state inevitably coexists
with excitons because its lifetime (<50 fs [41]) is very short.
Therefore, it is impossible to determine the PIA (𝜙CT) due
to the CT state without material dependent assumptions.
By the spectral decomposition, the relative numbers of the
excitons (𝑛D∗ and 𝑛A∗) and carrier [𝑛D+ (= 𝑛A−)] can be
determined against 𝑡. Here, we define 𝑁photon, 𝑁exciton, and
𝑁carrier as the numbers of absorbed photons, excitons, and
carriers, respectively. Δ exciton/𝑁photon (Δ exciton is the exciton
components of spectral change) is evaluated from the PIA
of the blend film. Δ exciton/𝑁exciton is evaluated from the PIA
of the neat film, with assuming that one absorbed photon
creates one exciton.Then, the absolute number (𝑛exciton) of the
photogenerated excitons per an absorbed photon is expressed
as

𝑛exciton =
(Δ exciton/𝑁photon)

(Δ exciton/𝑁exciton)
. (1)

Similarly, Δ carrier/𝑁photon (Δ carrier is the carrier components
of spectral change) is evaluated from the PIA of the blend
film. On the other hand, Δ carrier/𝑁carrier is evaluated from the
EIAof the neat film.Then, the absolute number (𝑛carrier) of the
photogenerated carriers per an absorbed photon is expressed
as

𝑛carrier =
(Δ carrier/𝑁photon)

(Δ carrier/𝑁carrier)
. (2)

The drawback of this method is that it does not explicitly
include the CT state, which is believed to play an essential
role in the carrier formation process. Nevertheless, the simple

model, which excludes material dependent assumptions, has
two advantages over the conventional complicated models.
First, themodel enables us to determine the absolute numbers
of the excitons (carriers) against 𝑡 only from the spectroscopic
data. Secondly, themodel is applicable to even unknownD/A
systems, because we can experimentally determine 𝜙D∗ , 𝜙A∗ ,
and 𝜙D+A− without any material dependent assumptions.

We note that the temperature effect on the carrier for-
mation dynamics gives us a clue on the carrier formation
mechanism. For example, Yonezawa et al. [60] reported that
the carrier formation efficiency (ΦCF), which is defined as
the number of the photoinduced carriers per an absorbed
photon, is nearly insensitive to temperature in several OSCs.
This suggests that the exciton dissociation is treated by
quantum-mechanical approach [62–67] and not by the so-
called Marcus picture [68]. In the former picture, the exciton
dissociation is quantum-mechanically treated by the time-
evolution of a wave function. In the latter picture, the charge
separation is classically treated by the energy shift induced by
displacement of the surrounding molecules.

1.3. Donor Polymers and Small Molecules for OSC. Histor-
ically, extensive spectroscopic investigations [32–43, 46–51]
have been carried out on the charge formation dynamics in
regioregular poly(3-hexylthiophene) (rr-P3HT)/[6,6]-phenyl
C
61
-butyric acid methyl ester (PCBM) blend film, due to

its reproducible power conservation efficiency (PCE > 5%
[69–71]). In particular, the regioregularity of P3HT and the
annealing procedure have significant effects on the carrier
formation dynamics of P3HT/PCBM blend film. The cross-
sectional transmission electron microscopy (TEM) of rr-
P3HT/PCBM blend film shows characteristic pathway for
carrier transport through the film thickness. The length scale
of the phase separation was 24 nm [72]. The recent develop-
ment of the low-band gap donor polymers further increased
PCE beyond 5%, which motivated intensive spectroscopic
investigation of the low-band gap donor polymers [56–64]. In
particular, Yu and coworkers [73, 74] have developed a series
of donor polymers based on alternating ester-substituted
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Figure 3: Energy level diagrams of various D/A interface.

thieno[3,4-b]thiophene and benzodithiophene units (PTBn:
n = 1–7). The poly[[4,8-bis [(2-ethylhexyl)oxy] benzo [1,2-
b:4,5-b] dithiophene-2,6-diyl] [3-fluoro-2-[(2-ethylhexyl)
carbonyl]thieno [3,4-b] thiophenediyl]] (PTB7)/[6,6]-phenyl
C
71
-butyric acid methyl ester (PC

71
BM) OSC shows a high

PCE (∼9% [75]).The AFM images [76] of the PCE-optimized
PTB7/PC

71
BM blend films show fiber-like structures (10–

50 nmwide and 200–400 nm long), which are ascribed to the
donor- or acceptor-rich domains.

The domain structure of the BHJ layer is complicated
and its relation to the PCE value is still controversial.
By means of the scanning transmission X-ray microscopy
(STXM), Collins et al. [77] investigated the domain structure
of PTB7/PC

71
BM blend film prepared without additive.

They found that the PTB7-rich domain shows considerable
fullerene mixing. By means of atomic force microscopy
(AFM) coupled with plasma-ashing technique, Hedley et al.
[76] observed a substructure of ∼10 nm inside the fullerene
domain (∼100 nm) of the PTB7/PC

71
BM blend film prepared

without additive. Such a complexity of the domain structure
of the BHJ layer may prevent a true understanding of the
carrier formation dynamics. In this sense, a planar hetero-
junction (HJ)OSCwithwell-definedD/A interface is suitable
for detailed investigation on the carrier formation and recom-
bination dynamics [78–80]. For example,Moritomo et al. [80]
revealed carrier density effect on the carrier recombination
process in PTB7/C

70
HJ solar cell.

Another candidates for the donor materials are the small
molecules, because they are easy to synthesize andpurify.This
is in sharp contrast with the polymer donors, which suffer
from bad synthetic reproducibility and difficult purification
procedures [81, 82]. Among small molecular donors,
diketopyrrolopyrrole (DPP) pigments were developed in the
early 1970s and have been widely used in inks, paints, and
plastics [83]. Recently, Nguyen’s group developed an
oligothiophene-DPP molecule with ethylhexyl substituents
terthiophen-5-yl)-pyrrolo[3,4-c]pyrrolo-1,4-dione] (SMDP-
PEH) [83, 84]. The SMDPPE-based OSC shows a high PCE
(∼3% [85]) with PC

71
BM among the small molecule-based

OSCs. The AFM images [85] of the PCE-optimized SMDP-
PEH/PC

71
BM blend films show fiber-like (∼20 nm wide and

∼50 nm long) and overshaped structures, which are ascribed
to the donor- and acceptor-rich domains, respectively.

In this review article, we introduce amethod to determine
the absolute numbers of the excitons and carriers against 𝑡
only from the PIA and EIA spectra. The method was applied
to the prototypical OSCs, that is, (i) PTB7/PC

71
BM blend,

(ii) rr-P3HT/PCBM blend, (iii) PTB7/C
70

bilayer, and (iv)
SMDPPEH/PC

71
BM blend films. Figure 3 shows energy level

diagram for respective D/A interfaces. Quantitative analyses
clarified important aspects of the carrier formation dynamics
in the OSCs. First, the late decay component of exciton
does not contribute to the carrier formation process, as
observed in (i) PTB7/PC

71
BM blend, (ii) rr-P3HT/PCBM

blend, (iii) PTB7/C
70

bilayer, and (iv) SMDPPEH/PC
71
BM

blend films. This is probably because the late component has
not enough excess energy to separate into electron and hole
at D/A interface. Secondly, the exciton-carrier conversion
process is insensitive to temperature, as observed in (iii)
PTB7/C

70
bilayer and (iv) SMDPPEH/PC

71
BM blend films.

This observation, together with the fast carrier formation
time in OSCs, is consistent with the hot exciton picture.

2. Experimental Technique

2.1. Transient Absorption Spectroscopy. Figure 4 shows a
prototypical setup for the transient absorption spectroscopy.
Second harmonics (=400 nm) of the regenerative amplified
Ti:sapphire laser are usually used as the pump pulse. In
some cases, the wavelength of the pump pulse is converted
with use of an optical parametric amplifier (OPA). A white
pulse, which is generated by self-phase modulation in a
sapphire plate, is used as the probe pulse. The delay stage
controls the delay time (t) between the pump and probe
pulse.The spectra of the transmitted probe pulse are analyzed
with a multichannel detector attached to a spectrometer. The
differential absorption spectra (ΔOD) are defined as ΔOD =
− ln(𝐼on/𝐼off ), where 𝐼on and 𝐼off are the transmitted light
intensity with and without pump excitation, respectively.The
photogenerated exciton and carrier cause characteristic PIA
in the infrared region.
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Figure 4: Schematic illustration of the experimental setup for transient absorption spectroscopy.

2.2. Electrochemical Differential Absorption Spectroscopy. The
electrochemical differential absorption spectra (ΔODEC) [61]
are defined as ΔODEC = − ln(𝐼doped/𝐼non), where 𝐼doped and
𝐼non are the transmitted spectra of hole-doped and non-
doped films, respectively. The electrochemically doped car-
rier causes a characteristic EIA in the infrared region. The
doped carrier density (𝑛D+) is evaluated from the current
density and doping time.The electrochemical carrier-doping
was usually performed in two-pole electrochemical cell with
a pair of quartz windows.The electric current is parallel to the
light path.The cathode and anode are the donor neat film and
a small piece of Li metal. The electrolyte is usually propylene
carbonate (PC) solution containing 1mol/l LiClO

4
.

3. PTB7/PC71BM Blend Film:
A Prototypical Example

3.1. Decomposition of the PIA Spectra. First of all, let us
demonstrate how to decompose the PIA into the respective
components, that is, 𝜙D+A− , 𝜙A∗ , and 𝜙D∗ . Figure 5(a) shows
ΔOD spectra of the PTB7/PC

71
BM blend film.The PIA spec-

tra in the late stage (>1 ps) show broad PIA around 1150 nm.
The PIA is originated from the photoinduced carriers (D+) of
PTB7 [57–60]. Actually, the spectral profile is similar to that
of the electrochemical differential absorption spectra of the
PTB7neat film (vide infra).Therefore, the PIA in the late stage
can be used as 𝜙D+A− . We note that the photoexcitation of
the BHJ layer creates the excitons, not the carriers.Therefore,
the PIA in the early state (<1 ps) is overlapped by PIA due
to 𝑛D∗ and 𝑛A∗ . Figure 5(b) shows ΔOD spectra of PC

71
BM

neat film. The PIA due to A∗ is very flat and the spectral
shape is independent of 𝑡. Then, the PIA can be used as 𝜙A∗ .

Figure 5(c) showsΔOD spectra of PTB7 neat film. PIA due to
D∗ shows broad peak around 1200 nm and the spectral shape
is nearly independent of t (<10 ps).Then, the PIA (<10 ps) can
be used as 𝜙D∗ .

Now, we can decompose 𝜙exp of PTB7/PC
71
BM blend

film into 𝜙D+A− , 𝜙A∗ , and 𝜙D∗ . The spectral weights of
the respective components were determined so that they
minimize the following trial function: 𝐹(𝐶D+A− , 𝐶A∗ , 𝐶D∗) =
∑
𝑖
[𝐶D+A−𝜙D+A−(𝜆𝑖) + 𝐶A∗𝜙A∗(𝜆𝑖) + 𝐶D∗𝜙D∗(𝜆𝑖) − 𝜙exp(𝜆𝑖)]

2.
The PIA of the blend film at 3 ps was used as 𝜙D+A− . The PIA
of PC
71
BM neat film at 1 ps was used as 𝜙A∗ .The PIA of PTB7

neat film at 1 ps was used as 𝜙D∗ . Figure 6 shows examples of
the decomposition of the PIA spectra into 𝜙D+A− , 𝜙A∗ , and
𝜙D∗ . Strictly speaking, the cross sections for the respective
species may differ between the neat and blend films. The
difference is considered to be negligible because the PIA is
measured in the infrared region below the optical gap.

3.2. Absolute Numbers of the Elementary Excitations. In order
to spectroscopically evaluate 𝑛D+ , 𝑛D∗ , and 𝑛A∗ per an
absorbed photon, we need the absolute intensity of the
PIA per unit densities of D+, D∗, and A∗. The absolute
intensity of the PIA due to D+ is easily evaluated by the
electrochemical differential absorption spectroscopy [61].
Figure 6 shows examples of the electrochemical differential
spectra (ΔODEC). The shoulder-like structure in ΔODEC
spectrum [Figure 7(a)] of rr-P3HT neat film is analogous to
the PIA spectrum of rr-P3HT/PCBM blend film. Similarly,
the broad peak structure in ΔODEC spectrum [Figure 7(b)]
of the PTB7 neat film is analogous to the PIA spectrum of the
PTB7/PC

71
BM blend film. The absolute intensity of the PIA

can be evaluated from ΔODEC spectrum of PTB7 neat film
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with considering the electrochemically doped carrier number
per unit area. Concerning D∗ (A∗), it is reasonable to assume
that one absorbed photon creates one D∗ (A∗) in the donor
(acceptor) neat film. Then, the absolute intensity was evalu-
ated from ΔOD spectrum of PTB7 (PC

71
BM) neat film with

considering the absorption photon number per unit area.

3.3. Carrier Formation Dynamics. Figure 8 shows 𝑛D+ , 𝑛D∗ ,
and 𝑛A∗ per an absorbed photon in PTB7/PC71BMblend film
against 𝑡. The solid curves are results of least-squares fittings
with exponential functions. The carrier formation time (𝜏D+
= 0.3 ps) is very fast. Fast 𝜏D+ is ascribed to the molecular
mixing [77] as well as the nanosize domain structure [76]
of the BHJ. Here, we emphasized that the excitation pulse at
400mn was dominantly absorbed by the acceptor fullerene,
not by PTB7 [see upper panels of Figures 5(a) and 5(b)].
Consequently, the photoexcitation only creates A∗. It is
interesting that exciton decay time (𝜏A∗ = 1.5 ps) is much
slower than 𝜏D+ . This indicates that the late decay component
of A∗ does not contribute to the carrier formation process.

There are two possibilities to why the late component of
A∗ does not dissociate. One possibility is that the exciton
recombines before it reaches D/A interface. This scenario,
however, cannot explain fast 𝜏A∗ (=1.5 ps) of A

∗, as follows.
Without D/A interface, the decay channel of exciton is
(i) radiative recombination, (ii) triplet exciton formation,
and (iii) exciton-exciton annihilation. Among them, the
former two channels cannot explain fast 𝜏A∗ (=1.5 ps) of A

∗,
because typical times for these channels are on the order
of nanoseconds. On the other hands, 𝜏A∗ of neat PC71BM
film is 120 ps [54], which can be ascribed to the (iii) exciton-
exciton annihilation in bulk. The value, however, is much
longer than the observed 𝜏A∗ (=1.5 ps). Another possibility

is that the exciton dissociation efficiency decreases with 𝑡.
This is plausible because the excess energy of A∗ should
decrease with 𝑡. Then, late A∗ component has not enough
excess energy to separate into electron and hole across D/A
interface. Fast 𝜏A∗ in the blend film is probably ascribed to the
extra recombination process at D/A interface, such as quench
on free carrier or some structural defect. By means of a time-
evolution simulation of a wave packet, Iizuka and Nakayama
[67] theoretically investigated exciton dissociation at D/A
interface.Theydemonstrated that the dissociation probability
increases for the hot excitons compared with the ground-
state exciton owing to their small binding energies and large
diameters.The presentmethod does not explicitly include the
CT state, which is believed to play an essential role on the
carrier formation process. Nevertheless, if 𝜙CT is nearly the
same as 𝜙D+A− , the experimental results suggest that excess
energy is needed even for the formation of the CT state.

4. P3HT/PCBM Blend Film: Classical but
Complicated System

4.1. PIA Spectra and Analyses. As mentioned in the intro-
duction, there already exists extensive spectroscopic inves-
tigation on rr-P3HT/PCBM blend film in literatures [32–
43, 46–51]. Nevertheless, we reanalyzed the PIA spectra of rr-
P3HT/PCBMblend film [46] and tried to determine 𝑛D+ , 𝑛D∗ ,
and 𝑛A∗ per an absorbed photon against 𝑡. Systematic analyses
of the PIA spectra in the different BHJ systems may reveal
common aspects of the carrier formation dynamics in the
OSCs.

Figure 9(a) shows ΔOD spectra of rr-P3HT/PCBM
blend film. The PIA spectra in the late stage (>10 ps) show
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a shoulder-like structure, which is analogous to ΔODEC
spectrum [Figure 7(a)] of rr-P3HT neat film. Therefore, the
PIA in the late stage can be used as 𝜙D+A− . 𝜙A∗ is obtained
from ΔOD spectra [Figure 9(b)] of PCBM neat film, while
𝜙D∗ is obtained from ΔOD spectra [Figure 9(c)] of rr-P3HT
neat film.

By means of the least-squares fitting, 𝜙exp were decom-
posed into 𝜙D+A− , 𝜙A∗ , and 𝜙D∗ . The PIA of the blend film
at 3 ps was used as 𝜙D+A− . The PIA of the PCBM neat film
at 1 ps was used as 𝜙A∗ . The PIA of rr-P3HT neat film
at 1 ps was used as 𝜙D∗ . Figure 10 shows examples of the
decomposition of the PIA spectra of rr-P3HT/PCBM blend
film into 𝜙D+A− , 𝜙A∗ , and 𝜙D∗ . In order to spectroscopically
evaluate 𝑛D+ , 𝑛D∗ , and 𝑛A∗ per an absorbed photon, we need
the absolute intensity of the PIA per unit densities of D+,
D∗, and A∗. The absolute intensity of the PIA due to D+
is evaluated by the electrochemical differential spectroscopy
[Figure 7(a)].The absolute intensity of the PIA due toD∗ (A∗)
is evaluated from ΔOD spectrum of rr-P3HT (PCBM) neat
film.

4.2. Carrier Formation Dynamics. Figure 11 shows 𝑛D+ , 𝑛D∗ ,
and 𝑛A∗ per an absorbed photon in rr-P3HT/PCBM blend
film against 𝑡. The solid curves are results of least-squares
fittings with exponential functions. The present analysis
fails to observe the carrier formation process, because 𝑛D+
monotonously decreases with decay time of 4.4 ps. One
possible reason for this unexpected result is that the carrier
formation time is too fast to observe. Consistently, Hwang et
al. [32] proposed fast formation (<0.25 ps) of the interfacial
charge-transfer states. Another possible reason may be the
variation of the cross section of the carrier. The present
method assumes constant cross section of the carriers. The
extended electronic state of the CT state, however, may
enhance the cross section as compared with that of the small
polaron state (free carrier). If the cross section of the CT state
is higher than that of free carrier, 𝑛D+ value is overestimated
in the early stage. Consistently, Takahashi et al. [86] reported
intense PIA due to the CT state at 𝛼-sexithiophene (6T)/C

60

interface below ∼10 ps. This observation implies high oscilla-
tor strength of the CT state.
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(25 nm) bilayer film at (a) 300K and (b)

80K. Adjacent averages were plotted in 𝑛A∗ . The solid curves are results of the least-squares fittings with exponential functions.
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On the other hand, 𝑛D∗ slowly decreases with the decay
time (𝜏D∗ = 2.9 ps). This indicates that the late decay com-
ponent of D∗ does not contribute to the carrier formation
process, similar to the case of PTB7/PC

71
BM blend film.

5. PTB7/C70 Bilayer Film: A HJ System

5.1. PIA Spectra and Analyses. Figure 12(a) shows ΔOD
spectra of PTB7 (100 nm)/C

70
(25 nm) bilayer film. At 300K,

the PIA spectra in the late stage (>10 ps) show broad PIA
around 1150 nm. The PIA is originated from the photoin-
duced carriers (D+) of PTB7 [57–60]. In the early stage
(=1 ps), additional absorption component is observed around
1500 nm.The additional components are reasonably ascribed
to the PIA due to D∗ and A∗. 𝜙A∗ is obtained from ΔOD
spectra [Figure 12(b)] of C

70
neat film, while 𝜙D∗ is obtained

from ΔOD spectra [Figure 12(c)] of PTB7 neat film.
By means of the least-squares fitting, 𝜙exp were decom-

posed into 𝜙D+A− , 𝜙A∗ , and 𝜙D∗ . The PIA of the blend film at
10 ps was used as 𝜙D+A− . The PIA of C

70
neat film at 1 ps was

used as 𝜙A∗ .The PIA of PTB7 neat film at 1 ps was used as 𝜙D∗ .
Figure 13 shows examples of the decomposition of the PIA
spectra of PTB7/C

70
bilayer film into𝜙D+A− ,𝜙A∗ , and𝜙D∗ .The

absolute intensity of the PIA due to D+ is evaluated by the
electrochemical differential spectroscopy [Figure 7(a)]. The
absolute intensity of the PIA due to D∗ (A∗) is evaluated from
ΔOD spectrum of PTB7 (C

70
) neat film. Strictly speaking,

the cross sections for the respective species may depend on
temperature. In this sense, one should be careful when he
discusses temperature effect on the absolute number of 𝑛D+ ,
𝑛D∗ , and 𝑛A∗ . On the other hand, the temporal behaviors of
𝑛D+ , 𝑛D∗ , and 𝑛A∗ are independent of the cross section.

5.2. Carrier Formation Dynamics. Figure 14 shows 𝑛D+ , 𝑛D∗ ,
and 𝑛A∗ per an absorbed photon in PTB7 (100 nm)/C

70

(25 nm) bilayer film at (a) 300K and (b) 80K against 𝑡.
The solid curves are results of least-squares fittings with
exponential functions. At 300K [Figure 14(a)], the carrier
formation time (𝜏D+ = 1.1 ps) is rather slow as compared with
that (=0.3 ps) in the BHJ system. Slower 𝜏D+ is ascribed to
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Figure 16: ΔOD spectra of SMDPPEH/PC
71
BM blend film at 0.9 ps at (a) 300K and (b) 80K. Solid curves are results of the decomposition

into 𝜙D+A− , 𝜙A∗ , and 𝜙D∗ .

thicker domain in the heterojunction system and resultant
long journey of the excitons to D/A interface. Decay time
(𝜏D∗ = 1.2 ps) of D∗ is comparable to 𝜏D+ (=1.1 ps), indicating
an efficient conversion process from D∗ to the carrier. Decay
time (𝜏A∗ = 3.5 ps) of A∗, however, is much longer than 𝜏D+
(=1.1 ps). This indicates that the late decay component of A∗
does not contribute to the carrier formation process, similar
to the case of PTB7/PC

71
BM blend film.

Overall carrier formation dynamics at 80K [Figure 14(b)]
is similar to that at 300K [Figure 14(a)]. In particular, the
carrier formation efficiency (=0.5 carriers/absorbed photon)
at 80K is almost the same as that at 300K.Thus, the transient
absorption spectroscopy revealed that the exciton-carrier
conversion process is insensitive to temperature. We empha-
size that PCE of OCS steeply decreases with decrease in
temperature, because carrier transport process is significantly
sensitive to temperature. This observation, together with the
fast carrier formation time in OSCs [32, 41], is consistent
with the hot exciton picture. The low temperature effect is
the elongation of carrier formation (𝜏D+ = 1.5 ps) and exciton
decay (𝜏D∗ = 1.8 ps and 𝜏A∗ = 5.1 ps) times.

6. SMDPPEH/PC71BM Blend Film: Small
Molecule System

6.1. PIA Spectra and Analyses. Figure 15(a) shows ΔOD
spectra of SMDPPEH/PC

71
BM blend film. At 300K, the

PIA spectra show a broad absorption band in the infrared
region.Thepeak position shifts show a red-shift from 1100 nm

at 1 ps to 1200 nm at 10 ps. The red-shift disappears above
10 ps and the spectral profile becomes independent of 𝑡.
Therefore, the PIA in the late stage can be used as 𝜙D+A− . 𝜙A∗
is obtained from ΔOD spectra [Figure 15(b)] of PC

71
BM neat

film, while 𝜙D∗ is obtained from ΔOD spectra [Figure 15(c)]
of SMDPPEH neat film.

By means of the least-squares fitting, 𝜙exp were decom-
posed into 𝜙D+A− , 𝜙A∗ , and 𝜙D∗ . The PIA of the blend film at
10 ps was used as 𝜙D+A− . The PIA of PC

71
BM neat film at 1 ps

was used as 𝜙A∗ . The PIA of SMDPPEH neat film at 1 ps was
used as 𝜙D∗ . Figure 16 shows examples of the decomposition
of the PIA spectra of SMDPPEH/PC

71
BM blend film into

𝜙D+A− , 𝜙A∗ , and 𝜙D∗ . The absolute intensity of the PIA due
to D∗ (A∗) is evaluated from ΔOD spectrum of SMDPPEH
(PC
71
BM) neat film. It was difficult to obtain a quantitative

electrochemical differential spectra, because the SMDPPEH
molecule is solvable to the organic electrolyte.

6.2. Carrier Formation Dynamics. Figure 17 shows 𝑛D+ , 𝑛D∗ ,
and 𝑛A∗ per an absorbed photon in SMDPPEH/PC

71
BM

blend film at (a) 300K and (b) 80K against 𝑡. The solid
curves are results of least-squares fittings with exponential
functions. At 300K [Figure 16(a)], carrier formation time
(𝜏D+ = 0.4 ps) is very fast. Fast 𝜏D+ is ascribed to the nanosize
domain structure of the BHJ. Decay time (𝜏A∗ = 0.4 ps) of
A∗ is comparable to 𝜏D+ (=0.4 ps), indicating an efficient
conversion process from A∗ to the carrier. Decay time (𝜏D∗ =
2.6 ps) of D∗, however, is much longer than 𝜏D+ (=0.4 ps).
This indicates that the late decay component of A∗ does not
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Figure 17: 𝑛D+ , 𝑛D∗ , and 𝑛A∗ per an absorbed photon against the delay time in SMDPPEH/PC
71
BM blend film at (a) 300K and (b) 80K.

Adjacent averages were plotted in 𝑛A∗ . The solid curves are results of the least-squares fittings with exponential functions.

contribute to the carrier formation process, similar to the case
of PTB7/PC

71
BM blend film.

Overall carrier formation dynamics at 80K [Figure 17(b)]
is similar to that at 300K [Figure 17(a)], similar to the case
of PTB7/C

70
bilayer film. The low temperature effect is the

elongation of decay time (𝜏A∗ = 1.0) of A∗.

7. Summary

We applied a new method, which determines the absolute
numbers of the excitons and carriers only from the PIA and
EIA spectra, to (i) PTB7/PC

71
BM blend, (ii) rr-P3HT/PCBM

blend, (iii) PTB7/C
70

bilayer, and (iv) SMDPPEH/PC
71
BM

blend films. The analyses revealed important common fea-
tures on the carrier formation dynamics in the OSCs.
First, the late decay component of exciton does not con-
tribute to the carrier formation process, as observed in the
(i) PTB7/PC

71
BM blend, (ii) rr-P3HT/PCBM blend, (iii)

PTB7/C
70

bilayer, and (iv) SMDPPEH/PC
71
BM blend films.

This is probably because the late component has not enough
excess energy to separate into electron and hole at D/A
interface. Secondly, entire carrier formation dynamics is
insensitive to temperature, as observed in (iii) PTB7/C

70

bilayer and (iv) SMDPPEH/PC
71
BM blend films. This obser-

vation, together with the fast carrier formation time in OSCs
[32, 41], is consistent with the hot exciton picture.
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