3,055 research outputs found
Compact Toeplitz operators with continuous symbols on weighted Bergman spaces
Let L (n,dud0/21r) be a complete weighted Bergman space on the open unit disc n where du is a positive finite Borel measure on [O, 1). We show the following : When cp is a continuous function on the closed unit disc D, T</J is compact if and only if cp = 0 on an
Mineralogical aspects of interstratified chlorite-smectite associated with epithermal ore veins: A case study of the Todoroki Au-Ag ore deposit, Japan
Chlorite (C)-corrensite (Co)-smectite (S) seriesminerals occur as vein constituents in the two epithermal ore veins, the Chuetsu and Shuetsu veins of the Todoroki Au-Ag deposit. The characteristics of the C-Co-S seriesminerals indicate that the clays may be products of direct precipitation from hydrothermal fluids and subsequent mineralogical transformations during and/or after vein formation. The minerals from the Chuetsu vein are characterized by 'monomineralic' corrensite showing an extensive distribution throughout the vein, and trioctahedral smectite occurring locally. The Shuetsu vein minerals are characterized by C-Co series minerals which can be divided into three different types: a I type including discrete chlorite with minor amounts of S layers, a II type comprising interstratified C/Co and discrete chlorite, and a III type characterized by segregation structures of C and Co layers. The C-Co series minerals show slightly different spatial distributions in the Shuetsu vein. Different epithermal environments during the vein formations and possible kinetic effects may have played a role in the formation and conversion of Co-C series at the Shuetsu vein and S-Co series at the Chuetsu vein
Dephasing in matter-wave interferometry
We review different attempts to show the decoherence process in
double-slit-like experiments both for charged particles (electrons) and neutral
particles with permanent dipole moments. Interference is studied when electrons
or atomic systems are coupled to classical or quantum electromagnetic fields.
The interaction between the particles and time-dependent fields induces a
time-varying Aharonov phase. Averaging over the phase generates a suppression
of fringe visibility in the interference pattern. We show that, for suitable
experimental conditions, the loss of contrast for dipoles can be almost as
large as the corresponding one for coherent electrons and therefore, be
observed. We analyze different trajectories in order to show the dependence of
the decoherence factor with the velocity of the particles.Comment: 9 pages, 1 eps-figure. To appear in J. Phys. A: Math. Ge
Constraint propagation in the family of ADM systems
The current important issue in numerical relativity is to determine which
formulation of the Einstein equations provides us with stable and accurate
simulations. Based on our previous work on "asymptotically constrained"
systems, we here present constraint propagation equations and their eigenvalues
for the Arnowitt-Deser-Misner (ADM) evolution equations with additional
constraint terms (adjusted terms) on the right hand side. We conjecture that
the system is robust against violation of constraints if the amplification
factors (eigenvalues of Fourier-component of the constraint propagation
equations) are negative or pure-imaginary. We show such a system can be
obtained by choosing multipliers of adjusted terms. Our discussion covers
Detweiler's proposal (1987) and Frittelli's analysis (1997), and we also
mention the so-called conformal-traceless ADM systems.Comment: 11 pages, RevTeX, 2 eps figure
Adjusted ADM systems and their expected stability properties: constraint propagation analysis in Schwarzschild spacetime
In order to find a way to have a better formulation for numerical evolution
of the Einstein equations, we study the propagation equations of the
constraints based on the Arnowitt-Deser-Misner formulation. By adjusting
constraint terms in the evolution equations, we try to construct an
"asymptotically constrained system" which is expected to be robust against
violation of the constraints, and to enable a long-term stable and accurate
numerical simulation. We first provide useful expressions for analyzing
constraint propagation in a general spacetime, then apply it to Schwarzschild
spacetime. We search when and where the negative real or non-zero imaginary
eigenvalues of the homogenized constraint propagation matrix appear, and how
they depend on the choice of coordinate system and adjustments. Our analysis
includes the proposal of Detweiler (1987), which is still the best one
according to our conjecture but has a growing mode of error near the horizon.
Some examples are snapshots of a maximally sliced Schwarzschild black hole. The
predictions here may help the community to make further improvements.Comment: 23 pages, RevTeX4, many figures. Revised version. Added subtitle,
reduced figures, rephrased introduction, and a native checked. :-
Sensitivity of the Fe K Compton shoulder to the geometry and variability of the X-ray illumination of cosmic objects
In an X-ray reflection spectrum, a tail-like spectral feature generated via Compton downscattering, known as a Compton shoulder (CS), appears at the low-energy side of the iron K line. Despite its great diagnostic potential, its use as a spectral probe of the reflector has been seriously limited due to observational difficulties and modelling complexities. We revisit the basic nature of the CS by systematic investigation into its dependence on spatial and temporal parameters. The calculations are performed by Monte Carlo simulations for sphere and slab geometries. The dependence is obtained in a two-dimensional space of column density and metal abundance, demonstrating that the CS solves parameter degeneration between them which was seen in conventional spectral analysis using photoelectric absorption and fluorescence lines. Unlike the iron line, the CS does not suffer from any observational dependence on the spectral hardness. The CS profile is highly dependent on the inclination angle of the slab geometry unless the slab is Compton-thick, and the time evolution of the CS is shown to be useful to constrain temporal information on the source if the intrinsic radiation is variable. We also discuss how atomic binding of the scattering electrons in cold matter blurs the CS profile, finding that the effect is practically similar to thermal broadening in a plasma with a moderate temperature of ~5 eV. Spectral diagnostics using the CS is demonstrated with grating data of X-ray binary GX 301â2, and will be available in future with high-resolution spectra of active galactic nuclei obtained by microcalorimeters.JSPS KAKENHI (Grant IDs: 24740190, 24105007), Advanced Leading graduate school for Photon Science (ALPS
- âŠ