13 research outputs found
Non-destructive Plant Morphometric and Color Analyses Using an Optoelectronic 3D Color Microscope
Gene function discovery in plants, as other plant science quests, is aided by tools that image, document, and measure plant phenotypes. Tools that acquire images of plant organs and tissues at the microscopic level have evolved from qualitative documentation tools, to advanced tools where software-assisted analysis of images extracts quantitative information that allows statistical analyses. They are useful to perform morphometric studies that describe plant physical characteristics and quantify phenotypes, aiding gene function discovery. In parallel, non-destructive, versatile, robust, and user friendly technologies have also been developed for surface topography analysis and quality control in the industrial manufacture sector, such as optoelectronic three-dimensional (3D) color microscopes. These microscopes combine optical lenses, electronic image sensors, motorized stages, graphics engines, and user friendly software to allow the visualization and inspection of objects of diverse sizes and shapes from different angles. This allow the integration of different automatically obtained images along the Z axis of an object, into a single image with a large depth-of-field, or a 3D model in color. In this work, we explored the performance of an optoelectronic microscope to study plant morphological phenotypes and plant surfaces in different model species. Furthermore, as a “proof-of-concept,” we included the phenotypic characterization (morphometric analyses at the organ level, color, and cell size measurements) of Arabidopsis mutant leaves. We found that the microscope tested is a suitable, practical, and fast tool to routinely and precisely analyze different plant organs and tissues, producing both high-quality, sharp color images and morphometric and color data in real time. It is fully compatible with live plant tissues (no sample preparation is required) and does not require special conditions, high maintenance, nor complex training. Therefore, though barely reported in plant scientific studies, optoelectronic microscopes should emerge as convenient and useful tools for phenotypic characterization in plant sciences
Taller de matemáticas básicas, aprendizaje semipresencial
El Taller de Matemáticas Básicas, aprendizaje semipresencial sirve para ayudar a los estudiantes de nuevo ingreso a repasar, reforzar y/o aprender conceptos matemáticos para afrontar con éxito el estudio de un grado universitario
RESCUhE Project: Cultural Heritage vulnerability in a changing and directional climate
[EN] RESCUhE Project (Improving structural RESilience of Cultural HEritage to directional extreme hydro-meteorological events in the context of the Climate Change) is a coordinated IGME-UAM research project funded by Spanish Government (MCIN/AEI/10.13039/501100011033). The framework of this research is the predicted increase in climate change vulnerability of heritage sites and the current disconnection between both environmental research on material decay and the practical aspects of designing preventive conservation measurements.RESCUhE Project (Improving structural RESilience of Cultural HEritage to directional extreme hydro-meteorological events in the context of the Climate Change) is a coordinated IGME-UAM research project funded by Spanish Government (MCIN/AEI/10.13039/501100011033).Peer reviewe
The AP2/ERF Transcription Factor DRNL Modulates Gynoecium Development and Affects Its Response to Cytokinin
The gynoecium is the female reproductive system in flowering plants. It is a complex structure formed by different tissues, some that are essential for reproduction and others that facilitate the fertilization process and nurture and protect the developing seeds. The coordinated development of these different tissues during the formation of the gynoecium is important for reproductive success. Both hormones and genetic regulators guide the development of the different tissues. Auxin and cytokinin in particular have been found to play important roles in this process. On the other hand, the AP2/ERF2 transcription factor BOL/DRNL/ESR2/SOB is expressed at very early stages of aerial organ formation and has been proposed to be a marker for organ founder cells. In this work, we found that this gene is also expressed at later stages during gynoecium development, particularly at the lateral regions (the region related to the valves of the ovary). The loss of DRNL function affects gynoecium development. Some of the mutant phenotypes present similarities to those observed in plants treated with exogenous cytokinins, and AHP6 has been previously proposed to be a target of DRNL. Therefore, we explored the response of drnl-2 developing gynoecia to cytokinins, and found that the loss of DRNL function affects the response of the gynoecium to exogenously applied cytokinins in a developmental-stage-dependent manner. In summary, this gene participates during gynoecium development, possibly through the dynamic modulation of cytokinin homeostasis and response
Twisting development, the birth of a potential new gene
Evolution has long been considered to be a conservative process in which new genes arise from pre-existing genes through gene duplication, domain shuffling, horizontal transfer, overprinting, retrotransposition, etc. However, this view is changing as new genes originating from non-genic sequences are discovered in different organisms. Still, rather limited functional information is available. Here, we have identified TWISTED1 (TWT1), a possible de novo-originated protein-coding gene that modifies microtubule arrangement and causes helicoidal growth in Arabidopsis thaliana when its expression is increased. Interestingly, even though TWT1 is a likely recent gene, the lack of TWT1 function affects A. thaliana development. TWT1 seems to have originated from a non-genic sequence. If so, it would be one of the few examples to date of how during evolution de novo genes are integrated into developmental cellular and organismal processes
Circulating miRNome detection analysis reveals 537 miRNAS in plasma, 625 in extracellular vesicles and a discriminant plasma signature of 19 miRNAs in children with retinoblastoma from which 14 are also detected in corresponding primary tumors.
miRNAs regulate post-transcriptional gene expression in metazoans, and thus are involved in many fundamental cellular biological processes. Extracellular miRNAs are also found in most human biofluids including plasma. These circulating miRNAs constitute a long distance inter cellular communication system and are potentially useful biomarkers. High throughput technologies like microarrays are able to scan a complete miRNome providing useful detection scores that are underexplored. We proposed to answer how many and which miRNAs are detectable in plasma or extracellular vesicles as these questions have not yet been answered. We set out to address this knowledge gap by analyzing the mirRNome in plasma and corresponding extracellular vesicles (EVs) from 12 children affected by retinoblastoma (Rb) a childhood intraocular malignant tumor, as well as from 12 healthy similarly aged controls. We calculated an average of 537 detectable miRNAs in plasma and 625 in EVs. The most miRNA enriched compartment were EVs from Rb cases with an average of 656 detectable elements. Using hierarchical clustering with the detection scores, we generated broad detection mirnome maps and identified a plasma signature of 19 miRNAs present in all Rb cases that is able to discriminate cases from controls. An additional 9 miRNAs were detected in all the samples; within this group, miRNA-5787 and miRNA-6732-5p were highly abundant and displayed very low variance across all the samples, suggesting both are good candidates to serve as plasma references or normalizers. Further exploration considering participant's sex, allowed discovering 5 miRNAs which corresponded only to females and 4 miRNAs corresponding only to males. Target and pathway analysis of these miRNAs revealed hormonal function including estrogen, thyroid signaling pathways and testosterone biosynthesis. This approach allows a comprehensive unbiased survey of a circulating miRNome landscape, creating the possibility to define normality in mirnomic profiles, and to locate where in these miRNome profiles promising and potentially useful circulating miRNA signatures can be found
Lenguajes, sociedades y culturas.
Lenguajes, Sociedades y Culturas como obra que trasciende lo escritural, encarna
los senti-pensamientos de quienes decidimos darnos cita en el Simposio para
asumirlo como un escenario vital y dar a conocer nuestros avances y resultados de
las trayectorias en investigación.
Un entramado de realidades que asistieron y nos asistieron en la co-construcción
de relaciones y de lenguajes disímiles, paradójicos, literarios, científicos, en los que
nos encontramos y desencontramos, en los que nos reconocimos como comunidad
científica rigurosa, sin perder la calidez de la condición humana, en los que se vivió
intensamente y al debate las caleidoscópicas miradas de la investigación, primando
siempre el respecto por el lugar de observación de quien habla.
Habitan en estas páginas leves reflejos de los momentos vividos, sin pretensión alguna
de congelarlos o encerrarlos en el tiempo, sino como una reminiscencia de aquellas
conversaciones sostenidas no solo en los auditorios o en los salones, sino en todos
aquellos espacios en los que ponentes y asistentes encontrábamos posibilidades
para intercambiar ideas, sensaciones, emociones, contradicciones, entre otras