68 research outputs found

    Citrulline, a novel compatible solute in drought-tolerant wild watermelon leaves, is an efficient hydroxyl radical scavenger

    Get PDF
    AbstractDrought-tolerant wild watermelon accumulates high levels of citrulline in the leaves in response to drought conditions. In this work, the hydroxyl radical-scavenging activity of citrulline was investigated in vitro. The second-order rate constant for the reaction between citrulline and hydroxyl radicals was found to be 3.9×109 M−1 s−1, demonstrating that citrulline is one of the most efficient scavengers among compatible solutes examined so far. Moreover, citrulline effectively protected DNA and an enzyme from oxidative injuries. Liquid chromatography-mass spectrometry analysis revealed that at least four major products were formed by the reaction between citrulline and hydroxyl radicals. Activities of metabolic enzymes were not inhibited by up to 600 mM citrulline, indicating that citrulline does not interfere with cellular metabolism. We reasoned, from these results, that citrulline contributes to oxidative stress tolerance under drought conditions as a novel hydroxyl radical scavenger

    Bacterial variations on the methionine salvage pathway

    Get PDF
    BACKGROUND: The thiomethyl group of S-adenosylmethionine is often recycled as methionine from methylthioadenosine. The corresponding pathway has been unravelled in Bacillus subtilis. However methylthioadenosine is subjected to alternative degradative pathways depending on the organism. RESULTS: This work uses genome in silico analysis to propose methionine salvage pathways for Klebsiella pneumoniae, Leptospira interrogans, Thermoanaerobacter tengcongensis and Xylella fastidiosa. Experiments performed with mutants of B. subtilis and Pseudomonas aeruginosa substantiate the hypotheses proposed. The enzymes that catalyze the reactions are recruited from a variety of origins. The first, ubiquitous, enzyme of the pathway, MtnA (methylthioribose-1-phosphate isomerase), belongs to a family of proteins related to eukaryotic intiation factor 2B alpha. mtnB codes for a methylthioribulose-1-phosphate dehydratase. Two reactions follow, that of an enolase and that of a phosphatase. While in B. subtilis this is performed by two distinct polypeptides, in the other organisms analyzed here an enolase-phosphatase yields 1,2-dihydroxy-3-keto-5-methylthiopentene. In the presence of dioxygen an aci-reductone dioxygenase yields the immediate precursor of methionine, ketomethylthiobutyrate. Under some conditions this enzyme produces carbon monoxide in B. subtilis, suggesting a route for a new gaseous mediator in bacteria. Ketomethylthiobutyrate is finally transaminated by an aminotransferase that exists usually as a broad specificity enzyme (often able to transaminate aromatic aminoacid keto-acid precursors or histidinol-phosphate). CONCLUSION: A functional methionine salvage pathway was experimentally demonstrated, for the first time, in P. aeruginosa. Apparently, methionine salvage pathways are frequent in Bacteria (and in Eukarya), with recruitment of different polypeptides to perform the needed reactions (an ancestor of a translation initiation factor and RuBisCO, as an enolase, in some Firmicutes). Many are highly dependent on the presence of oxygen, suggesting that the ecological niche may play an important role for the existence and/or metabolic steps of the pathway, even in phylogenetically related bacteria. Further work is needed to uncover the corresponding steps when dioxygen is scarce or absent (this is important to explore the presence of the pathway in Archaea). The thermophile T. tengcongensis, that thrives in the absence of oxygen, appears to possess the pathway. It will be an interesting link to uncover the missing reactions in anaerobic environments

    Isolation of Physiologically Intact Chloroplasts from Euglena gracilis z

    Get PDF
    Chloroplasts were isolated from E. gracilis z grown on a vitamin B_<12> -limiting medium. The procedure is consisted of partial trysin digestion of the Euglena cells, subsequent mechanical disruption of the cells and collection of Chloroplasts by differential centrifugation. The isolated Chloroplasts fixed CO_2 at a rate of 20 μmoles of CO_2 per mg chlorophyll per hr, corresponding to one-third of the photosynthetic activity of the original cells. Linear sucrose density gradient centrifugation of the crude cell homogenate obtained by the digestive method shows that chlorophyll and most of the activity of ribulose biphosphate carboxylase cosediment as only one peak to the fraction corresponding to an equilibrium density of 1.165 g/cm^3. Based on these results we disignate the Chloroplasts isolated by the digestive method as the "intact" chloroplasts

    X-ray structure of Galdieria Rubisco complexed with one sulfate ion per active site

    Get PDF
    AbstractRibulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the reactions of carboxylation and oxygenation of ribulose-1,5-bisphosphate. These reactions require that the active site should be closed by a flexible loop (loop 6) of the large subunit. Rubisco from a red alga, Galdieria partita, has the highest specificity for carboxylation reaction among the Rubiscos hitherto reported. The crystal structure of unactivated Galdieria Rubisco has been determined at 2.6 Å resolution. The electron density map reveals that a sulfate binds only to the P1 anion-binding site of the active site and the loop 6 is closed. Galdieria Rubisco has a unique hydrogen bond between the main chain oxygen of Val332 on the loop 6 and the ϵ-amino group of Gln386 of the same large subunit. This interaction is likely to be crucial to understanding for stabilizing the loop 6 in the closed state and to making a higher affinity for anionic ligands

    Supplemental information

    Get PDF
    Supplemental information of a research article "Effect of chronic administration with human thioredoxin-1 transplastomic lettuce on diabetic mice"<https://doi.org/10.1002/fsn3.2391

    Revisiting RuBisCO

    No full text
    corecore