408 research outputs found

    Contact time periods in immunological synapse

    Get PDF
    This paper resolves the long standing debate as to the proper time scale τ of the onset of the immunological synapse bond, the noncovalent chemical bond defining the immune pathways involving T cells and antigen presenting cells. Results from our model calculations show τ to be of the order of seconds instead of minutes. Close to the linearly stable regime, we show that in between the two critical spatial thresholds defined by the integrin:ligand pair (Δ2∼ 40-45 nm) and the T-cell receptor TCR:peptide-major-histocompatibility-complex pMHC bond (Δ1∼ 14-15 nm), τ grows monotonically with increasing coreceptor bond length separation δ (= Δ2-Δ1∼ 26-30 nm) while τ decays with Δ1 for fixed Δ2. The nonuniversal δ-dependent power-law structure of the probability density function further explains why only the TCR:pMHC bond is a likely candidate to form a stable synapse

    High spatial resolution hard X-ray microscope using X-ray refractive lens and phase contrast imaging experiments

    Get PDF
    A high spatial resolution X-ray microscope was constructed using an X-ray refractive lens as an objective. The spatial resolution was tested using 18 keV X-ray. A 0.4 mm line and 0.4 mm space tantalum test pattern was successfully resolved. Using the similar setup with the addition of a phase plate, a Zernike type phase-contrast microscopy experiment was carried out for the phase retrieval of the samples. Two-dimensional phase-contrast images were successfully taken for the first time in the hard X-ray region. Images of a gold mesh sample were analyzed and the validity of this method was indicated. An improvement of the lens, however, is required for the precise phase retrieval of the samples. # 2001 Elsevier Science B.V. All rights reserved

    Acid epimerization of 20-keto pregnane glycosides is determined by 2D-NMR spectroscopy

    Get PDF
    Carbohydrates influence many essential biological events such as apoptosis, differentiation, tumor metastasis, cancer, neurobiology, immunology, development, host-pathogen interactions, diabetes, signal transduction, protein folding, and many other contexts. We now report on the structure determination of pregnane glycosides isolated from the aerial parts of Ceropegia fusca Bolle (Asclepiadaceae). The observation of cicatrizant, vulnerary and cytostatic activities in some humans and animals of Ceropegia fusca Bolle, a species endemic to the Canary Islands, encouraged us to begin a pharmacological study to determine their exact therapeutic properties. High resolution 1H-NMR spectra of pregnane glycosides very often display well-resolved signals that can be used as starting points in several selective NMR experiments to study scalar (J coupling), and dipolar (NOE) interactions. ROESY is especially suited for molecules such that ωτc ~ 1, where τc are the motional correlation times and ω is the angular frequency. In these cases the NOE is nearly zero, while the rotating-frame Overhauser effect spectroscopy (ROESY) is always positive and increases monotonically for increasing values of τc. The ROESY shows dipolar interactions cross peaks even in medium-sized molecules which are helpful in unambiguous assignment of all the interglycosidic linkages. Selective excitation was carried out using a double pulsed-field gradient spin-echo sequence (DPFGSE) in which 180° Gaussian pulses are sandwiched between sine shaped z-gradients. Scalar interactions were studied by homonuclear DPFGSE-COSY and DPFGSE-TOCSY experiments, while DPFGSE-ROESY was used to monitor the spatial environment of the selectively excited proton. Dipolar interactions between nuclei close in space can be detected by the 1D GROESY experiment, which is a one-dimensional counterpart of the 2D ROESY method. The C-12 and C-17 configurations were determined by ROESY experiments

    Rottlerin stimulates apoptosis in pancreatic cancer cells through interactions with proteins of the Bcl-2 family

    Get PDF
    Rottlerin is a polyphenolic compound derived from Mallotus philipinensis. In the present study, we show that rottlerin decreased tumor size and stimulated apoptosis in an orthotopic model of pancreatic cancer with no effect on normal tissues in vivo. Rottlerin also induced apoptosis in pancreatic cancer (PaCa) cell lines by interacting with mitochondria and stimulating cytochrome c release. Immunoprecipitation results indicated that rottlerin disrupts complexes of prosurvival Bcl-xL with Bim and Puma. Furthermore, siRNA knockdown showed that Bim and Puma are necessary for rottlerin to stimulate apoptosis. We also showed that rottlerin and Bcl-2 and Bcl-xL inhibitor BH3I-2' stimulate apoptosis through a common mechanism. They both directly interact with mitochondria, causing increased cytochrome c release and mitochondrial depolarization, and both decrease sequestration of BH3-only proteins by Bcl-xL. However, the effects of rottlerin and BH3I-2' on the complex formation between Bcl-xL and BH3-only proteins are different. BH3I-2' disrupts complexes of Bcl-xL with Bad but not with Bim or Puma, whereas rottlerin had no effect on the Bcl-xL interaction with Bad. Also BH3I-2', but not rottlerin, required Bad to stimulate apoptosis. In conclusion, our results demonstrate that rottlerin has a potent proapoptotic and antitumor activity in pancreatic cancer, which is mediated by disrupting the interaction between prosurvival Bcl-2 proteins and proapoptotic BH3-only proteins. Thus rottlerin represents a promising novel agent for pancreatic cancer treatment

    Ligand Mobility Modulates Immunological Synapse Formation and T Cell Activation

    Get PDF
    T cell receptor (TCR) engagement induces clustering and recruitment to the plasma membrane of many signaling molecules, including the protein tyrosine kinase zeta-chain associated protein of 70 kDa (ZAP70) and the adaptor SH2 domain-containing leukocyte protein of 76 kDa (SLP76). This molecular rearrangement results in formation of the immunological synapse (IS), a dynamic protein array that modulates T cell activation. The current study investigates the effects of apparent long-range ligand mobility on T cell signaling activity and IS formation. We formed stimulatory lipid bilayers on glass surfaces from binary lipid mixtures with varied composition, and characterized these surfaces with respect to diffusion coefficient and fluid connectivity. Stimulatory ligands coupled to these surfaces with similar density and orientation showed differences in their ability to activate T cells. On less mobile membranes, central supramolecular activation cluster (cSMAC) formation was delayed and the overall accumulation of CD3ζ at the IS was reduced. Analysis of signaling microcluster (MC) dynamics showed that ZAP70 MCs exhibited faster track velocity and longer trajectories as a function of increased ligand mobility, whereas movement of SLP76 MCs was relatively insensitive to this parameter. Actin retrograde flow was observed on all surfaces, but cell spreading and subsequent cytoskeletal contraction were more pronounced on mobile membranes. Finally, increased tyrosine phosphorylation and persistent elevation of intracellular Ca2+ were observed in cells stimulated on fluid membranes. These results point to ligand mobility as an important parameter in modulating T cell responses

    APASL consensus statements and recommendations for hepatitis C prevention, epidemiology, and laboratory testing

    Get PDF
    The Asian Pacific Association for the Study of the Liver (APASL) convened an international working party on “APASL consensus statements and recommendations for management of hepatitis C” in March 2015 to revise the “APASL consensus statements and management algorithms for hepatitis C virus infection” (Hepatol Int 6:409–435, 2012). The working party consisted of expert hepatologists from the Asian–Pacific region gathered at the Istanbul Congress Center, Istanbul, Turkey on 13 March 2015. New data were presented, discussed, and debated during the course of drafting a revision. Participants of the consensus meeting assessed the quality of the cited studies. The finalized recommendations for hepatitis C prevention, epidemiology, and laboratory testing are presented in this review

    Effects of Intracellular Calcium and Actin Cytoskeleton on TCR Mobility Measured by Fluorescence Recovery

    Get PDF
    Background: The activation of T lymphocytes by specific antigen is accompanied by the formation of a specialized signaling region termed the immunological synapse, characterized by the clustering and segregation of surface molecules and, in particular, by T cell receptor (TCR) clustering. Methodology/Principal Findings: To better understand TCR motion during cellular activation, we used confocal microscopy and photo-bleaching recovery techniques to investigate the lateral mobility of TCR on the surface of human T lymphocytes under various pharmacological treatments. Using drugs that cause an increase in intracellular calcium, we observed a decrease in TCR mobility that was dependent on a functional actin cytoskeleton. In parallel experiments measurement of filamentous actin by FACS analysis showed that raising intracellular calcium also causes increased polymerization of the actin cytoskeleton. These in vitro results were analyzed using a mathematical model that revealed effective binding parameters between TCR and the actin cytoskeleton. Conclusion/Significance: We propose, based on our results, that increase in intracellular calcium levels leads to actin polymerization and increases TCR/cytoskeleton interactions that reduce the overall mobility of the TCR. In a physiological setting, this may contribute to TCR re-positioning at the immunological synapse

    Hepatic STAT1-Nuclear Translocation and Interleukin 28B Polymorphisms Predict Treatment Outcomes in Hepatitis C Virus Genotype 1-Infected Patients

    Get PDF
    We investigated associations between signal transducer and activator of transcription (STAT) 1 in pretreated liver tissues, interleukin (IL) 28B polymorphism and treatment response in hepatitis C virus (HCV)-infected patients treated with peginterferon and ribavirin.We performed immunostaining analysis of STAT1 in liver tissues and determined IL28B polymorphism at rs8099917. We then compared the results with treatment outcomes in HCV genotype 1 patients with high viral load who were receiving peginterferon plus ribavirin. In univariate analysis, younger age, white blood cell counts, virological responder, early virological responder (EVR), mild activity (A1) of liver inflammation grading, and lower STAT1 nuclear-stain of hepatocytes in zone 1, zone 2 and total zones of liver were associated with sustained virological responder (SVR). Multivariate analysis showed that EVR, age and hepatic STAT1 nuclear-stain in zone 2 of liver were independent predictors of SVR. It was also revealed that IL28B and STAT1-nuclear translocation in hepatocytes are independent predictors of response to treatment with peginterferon and ribavirin in chronic hepatitis C patients.Concomitant assessment of lower STAT1 nuclear-stain of hepatocytes and IL28B polymorphism is useful for prediction of SVR in HCV genotype 1 patients
    corecore