39 research outputs found

    Coalition structure generation in cooperative games with compact representations

    Get PDF
    This paper presents a new way of formalizing the coalition structure generation problem (CSG) so that we can apply constraint optimization techniques to it. Forming effective coalitions is a major research challenge in AI and multi-agent systems. CSG involves partitioning a set of agents into coalitions to maximize social surplus. Traditionally, the input of the CSG problem is a black-box function called a characteristic function, which takes a coalition as input and returns the value of the coalition. As a result, applying constraint optimization techniques to this problem has been infeasible. However, characteristic functions that appear in practice often can be represented concisely by a set of rules, rather than treating the function as a black box. Then we can solve the CSG problem more efficiently by directly applying constraint optimization techniques to this compact representation. We present new formalizations of the CSG problem by utilizing recently developed compact representation schemes for characteristic functions. We first characterize the complexity of CSG under these representation schemes. In this context, the complexity is driven more by the number of rules than by the number of agents. As an initial step toward developing efficient constraint optimization algorithms for solving the CSG problem, we also develop mixed integer programming formulations and show that an off-the-shelf optimization package can perform reasonably well

    Radiographic and clinical assessment of unidirectional porous hydroxyapatite to treat benign bone tumors

    Get PDF
    Unidirectional porous hydroxyapatite (UDPHAp) was developed as an excellent scaffold with unidirectional pores oriented in the horizontal direction with interpore connections. The purpose of this study was to assess radiographic changes and clinical outcomes and complications following UDPHAp implantation to treat benign bone tumors. We retrospectively analyzed 44 patients treated with intralesional resection and UDPHAp implantation for benign bone tumors between 2010 and 2015. Clinical and radiographic findings were evaluated postoperatively at regular follow-up visits. The mean follow-up was 49 months. Radiographic changes were classified into five stages based on bone formation in the implanted UDPHAp according to Tamai's classification. All patients showed excellent bone formation inside and around implanted UDPHAp. Absorption of UDPHAp and bone marrow cavity remodeling was identified in 20 patients at a mean of 17 months postoperatively, and was significantly more common in young patients. Preoperative cortical thinning was completely regenerated in 26 of 31 patients on average 10 months after surgery. There were no cases of delayed wound healing, postoperative infection, or allergic reaction related to implanted UDPHAp. UDPHAp is a useful bone-filling substitute for treating benign bone tumor, and the use of this material has a low complication rate

    Association between Immediate Postoperative Radiographic Findings and Failed Internal Fixation for Trochanteric Fractures: Systematic Review and Meta-Analysis

    Get PDF
    Failed internal fixations for trochanteric fractures have a strong negative impact owing to increased postoperative mortality and high medical costs. However, evidence on the prognostic value of postoperative radiographic findings for failed internal fixations is limited. We aimed to clarify the association between comprehensive immediate postoperative radiographic findings and failed internal fixation using relative and absolute risk measures. We followed the meta-analysis of observational studies in epidemiology guidelines and the Cochrane handbook. We searched specific databases in November 2021. The outcomes of interest were failed internal fixation and cut-out. We pooled the odds ratios and 95% confidence intervals using a random-effects model and calculated the number needed to harm for each outcome. Thirty-six studies involving 8938 patients were included. The certainty of evidence in the association between postoperative radiographic findings and failed internal fixation or cut-out was mainly low or very low except for the association between intramedullary malreduction on the anteromedial cortex and failed internal fixation. Moderate certainty of evidence supported that intramedullary malreduction on the anteromedial cortex was associated with failed internal fixation. Most postoperative radiographic findings on immediate postoperative radiographs for trochanteric fractures were uncertain as prognostic factors for failed internal fixations

    Clinical relevance and functional significance of cell-free microRNA-1260b expression profiles in infiltrative myxofibrosarcoma

    Get PDF
    Infiltrative tumor growth into adjacent soft tissues is a major cause of the frequent recurrence and tumor-related death of myxofibrosarcoma (MFS), but no useful biomarkers reflecting tumor burden and infiltrative growth are available. While emerging evidence suggests a diagnostic and functional role of extracellular/circulating microRNA (miRNA) in various malignant diseases, their significance in MFS patients remains unknown. Global miRNA profiling identified four upregulated miRNAs in MFS patient sera and culture media of MFS cells. Among these, serum miR-1260b level was significantly upregulated in patient serum discriminating from healthy individuals and closely correlated with clinical status and tumor dynamics in MFS-bearing mice. In addition, high miR-1260b expression in serum was correlated with radiological tail-like patterns, characteristic of the infiltrative MFS. The extracellular miR-1260b was embedded in tumor-derived extracellular vesicles (EVs) and promoted cellular invasion of MFS through the downregulation of PCDH9 in the adjacent normal fibroblasts. Collectively, circulating miR-1260b expression may represent a novel diagnostic target for tumor monitoring of this highly aggressive sarcoma. Moreover, EV-miR-1260b could act as a transfer messenger to adjacent cells and mediate the infiltrative growth of MFS, providing new insights into the mechanism of infiltrative nature via crosstalk between tumor cells and their microenvironment

    Clinical and Functional Significance of Intracellular and Extracellular microRNA-25-3p in Osteosarcoma

    Get PDF
    Although there is considerable evidence indicating that the dysregulation of microRNAs (miRNAs) in malignant tumors plays a role in tumor development, the overall function of miRNAs and their clinicopathological significance are not well understood. In this retrospective analysis of 45 biopsy specimens from osteosarcoma (OS) patients, we investigated the functional and clinical significance of miR-25-3p in OS, which we previously identified as a highly expressed miRNA in OS patients’ serum. We observed that miR-25-3p dysregulation in human OS tissues was negatively correlated with the clinical prognosis, whereas the expression level of its target gene, Dickkopf WNT Signaling Pathway Inhibitor 3 (DKK3), was positively correlated with the clinical prognosis. Endogenous miR-25-3p upregulation promoted tumor growth, invasion, and drug resistance, which was consistent with DKK3 silencing in OS cells. In addition, secretory miR-25-3p was embedded in tumor-derived exosomes, where it promoted capillary formation and the invasion of vascular endothelial cells. Overall, our results show that miR-25-3p has intracellular and extracellular oncogenic functions as well as clinicopathological relevance in OS, indicating its potential as a novel diagnostic and therapeutic tool for the clinical management of this disease

    The Masquelet technique for septic arthritis of the small joint in the hands: Case reports

    Get PDF
    Septic arthritis in distal interphalangeal (DIP) joints sometimes occurs in association with mucous cysts or after the surgical treatment of mallet fingers. Recently, several studies have demonstrated the effectiveness of the Masquelet technique in the treatment of bone defects caused by trauma or infection. However, only few studies have reported the use of this technique for septic arthritis in small joints of the hand, and its effectiveness in treating septic arthritis in DIP joints remains unclear. We report the clinical and radiological outcomes of three patients who were treated with the Masquelet technique for septic arthritis in DIP joints. One patient had uncontrolled diabetes and another had rheumatoid arthritis treated with methotrexate and prednisolone. The first surgical stage involved thorough debridement of the infection site, including the middle and distal phalanx. We placed an external fixator from the middle to the distal phalanx and then packed the cavity of the DIP joint with antibiotic cement bead of polymethylmethacrylate (40 g) including 2 g of vancomycin and 200 mg of minocycline. At 4-6 weeks after the first surgical stage, the infection had cleared, and the second surgical stage was performed. The external fixator and cement bead were carefully removed while carefully preserving the surrounding osteo-induced membrane. The membrane was smooth and nonadherent to the cement block. In the second surgical stage, an autogenous bone graft was harvested from the iliac bone and inserted into the joint space, within the membrane. The bone graft, distal phalanx, and middle phalanx were fixed with Kirschner wires and/or a soft wire. Despite the high risk of infection, bone union was achieved in all patients without recurrence of infection. Although the Masquelet technique requires two surgeries, it can lead to favorable clinical and radiological outcomes for infected small joints of the hand.Septic arthritis in distal interphalangeal (DIP) joints sometimes occurs in association with mucous cysts or after the surgical treatment of mallet fingers. Recently, several studies have demonstrated..

    Liquid Biopsy Targeting Monocarboxylate Transporter 1 on the Surface Membrane of Tumor-Derived Extracellular Vesicles from Synovial Sarcoma

    Get PDF
    Simple Summary Synovial sarcoma (SS) is associated with a high risk of recurrence and poor prognosis, and no biomarker useful in monitoring tumor burden exists. We identified monocarboxylate transporter 1 (MCT1) expressed in extracellular vesicles (EVs) derived from synovial sarcoma as a potential such marker. Circulating levels of MCT1(+)CD9(+) EVs were significantly correlated with tumor volume in a SS mouse model. Serum levels of MCT1(+)CD9(+) EVs reflected tumor burden and treatment response in SS patients. Patients with MCT1 expression on the plasma membrane have significantly worse overall survival than those with nuclear expression. Silencing of MCT1 reduced the malignant phenotype including cellular viability, migration, and invasion of SS cells. MCT1 may thus be a promising novel target for liquid biopsies and a novel therapeutic target. The lack of noninvasive biomarkers that can be used for tumor monitoring is a major problem for soft-tissue sarcomas. Here we describe a sensitive analytical technique for tumor monitoring by detecting circulating extracellular vesicles (EVs) of patients with synovial sarcoma (SS). The proteomic analysis of purified EVs from SYO-1, HS-SY-II, and YaFuSS identified 199 common proteins. DAVID GO analysis identified monocarboxylate transporter 1 (MCT1) as a surface marker of SS-derived EVs, which was also highly expressed in SS patient-derived EVs compared with healthy individuals. MCT1(+)CD9(+) EVs were also detected from SS-bearing mice and their expression levels were significantly correlated with tumor volume (p = 0.003). Furthermore, serum levels of MCT1(+)CD9(+) EVs reflected tumor burden in SS patients. Immunohistochemistry revealed that MCT1 was positive in 96.7% of SS specimens and its expression on the cytoplasm/plasma membrane was significantly associated with worse overall survival (p = 0.002). Silencing of MCT1 reduced the cellular viability, and migration and invasion capability of SS cells. This work describes a new liquid biopsy technique to sensitively monitor SS using circulating MCT1(+)CD9(+) EVs and indicates the therapeutic potential of MCT1 in SS

    Liquid Biopsy Targeting Monocarboxylate Transporter 1 on the Surface Membrane of Tumor-Derived Extracellular Vesicles from Synovial Sarcoma

    No full text
    The lack of noninvasive biomarkers that can be used for tumor monitoring is a major problem for soft-tissue sarcomas. Here we describe a sensitive analytical technique for tumor monitoring by detecting circulating extracellular vesicles (EVs) of patients with synovial sarcoma (SS). The proteomic analysis of purified EVs from SYO-1, HS-SY-II, and YaFuSS identified 199 common proteins. DAVID GO analysis identified monocarboxylate transporter 1 (MCT1) as a surface marker of SS-derived EVs, which was also highly expressed in SS patient-derived EVs compared with healthy individuals. MCT1+CD9+ EVs were also detected from SS-bearing mice and their expression levels were significantly correlated with tumor volume (p = 0.003). Furthermore, serum levels of MCT1+CD9+ EVs reflected tumor burden in SS patients. Immunohistochemistry revealed that MCT1 was positive in 96.7% of SS specimens and its expression on the cytoplasm/plasma membrane was significantly associated with worse overall survival (p = 0.002). Silencing of MCT1 reduced the cellular viability, and migration and invasion capability of SS cells. This work describes a new liquid biopsy technique to sensitively monitor SS using circulating MCT1+CD9+ EVs and indicates the therapeutic potential of MCT1 in SS
    corecore