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Abstract This paper presents a new way of formalizing the coalition structure generation
problem (CSG) so that we can apply constraint optimization techniques to it. Forming effec-
tive coalitions is a major research challenge in AI and multi-agent systems. CSG involves
partitioning a set of agents into coalitions to maximize social surplus. Traditionally, the input

This paper is an extended version of conference papers that appeared as [24] and [38]. The main differences
from those previous two papers are found in Sects. 3 and 3.1.2. We evaluate our methods in a refined manner
from [24] and discuss the advantage of handling negative value rules against a naïve method that transforms
negative value rules into positive value rules.
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of the CSG problem is a black-box function called a characteristic function, which takes
a coalition as input and returns the value of the coalition. As a result, applying constraint
optimization techniques to this problem has been infeasible. However, characteristic func-
tions that appear in practice often can be represented concisely by a set of rules, rather than
treating the function as a black box. Then we can solve the CSG problem more efficiently
by directly applying constraint optimization techniques to this compact representation. We
present new formalizations of the CSG problem by utilizing recently developed compact
representation schemes for characteristic functions. We first characterize the complexity of
CSG under these representation schemes. In this context, the complexity is driven more by
the number of rules than by the number of agents. As an initial step toward developing effi-
cient constraint optimization algorithms for solving the CSG problem, we also developmixed
integer programming formulations and show that an off-the-shelf optimization package can
perform reasonably well.

Keywords Multiagent systems · Cooperative games · Coalition structure generation ·
Compact representation

1 Introduction

Coalition formation is an important capability in automated negotiations among self-
interested agents. Coalition structure generation (CSG) involves partitioning a set of agents
into coalitions to maximize social surplus. This problem has become a popular research topic
inAI andmulti-agent systems (MAS) [4]. PossibleCSGapplications include distributed vehi-
cle routing [32], multi-sensor networks [7], and so on. The CSG problem is equivalent to a
complete set partition problem [44], and various algorithms have been developed for solving
it. Sandholm et al. [31] propose an anytime algorithm with worst-case guarantees. However,
to obtain an optimal coalition structure, this algorithm must check all of the coalition struc-
tures. Thus, the worst-case time complexity is O(nn), where n is the number of agents. On
the other hand, dynamic programming (DP) based algorithms [21,25,44] are guaranteed to
find an optimal solution in O(3n). The CSG problem can also be considered in partition
function games (PFGs), where the value of a coalition depends on how the other agents are
partitioned. Rahwan et al. [27] first considered the CSG problem in PFGs. We expand the
discussion of related literature of CSG problems in the next subsection.

Such existing works on CSG assume that the characteristic function is represented implic-
itly, and we have only oracle access to the function, where the value of a coalition (or a
coalition structure as a whole) can be obtained using some procedure. This is because rep-
resenting an arbitrary characteristic function explicitly requires Θ(2n) numbers, which is
prohibitive for a large n. When a characteristic function is represented by a black-box func-
tion, there is no room for applying constraint optimization techniques.

However, characteristic functions that appear in practice often display significant struc-
ture, and such characteristic functions can probably be represented much more concisely.
Indeed, recently, several new methods for representing characteristic functions have been
developed [5,6,14,20]. These representation schemes, which capture the characteristics of
the interactions among agents in a natural and concise manner, can significantly reduce the
representation size. It is natural to assume that an organizer who wants to solve a CSG prob-
lem has knowledge on possible interactions among agents and can concisely represent her
knowledge by a set of rules. For example, let us consider a situation where a professor is
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dividing students in her laboratory into several research groups. Each student has a specific
feature, e.g., good/bad at programming, theory, writing, etc. The professor knows the syn-
ergies among these features, e.g., there is positive synergy between a student who is good
at programming and another student who is good at theory. From the knowledge about stu-
dents’ features and the synergies, the professor can construct a set of rules. Surprisingly, to
our knowledge, prior to our work these representation schemes had not yet been used for
CSG, which is our goal in this paper. Using these compact representation schemes, a char-
acteristic function is represented by a set of rules, rather than treating the function as a black
box. The idea is to solve the CSG problem more efficiently by directly applying constraint
optimization techniques to this compact representation.

We examine three representative compact representation schemes: (i) marginal contribu-
tion nets (MC-nets) [14] and embeddedmarginal contribution nets [20], (ii) synergy coalition
groups (SCGs) [6], and (iii) SCGs in multi-issue domains (SCGs in MID) [5]. The optimal
choice of a representation scheme depends on the application.

Quite interestingly, we find that there exists some common structure among these cases; in
essence, the problem is to find a subset of rules that maximizes the sum of rule values under
certain constraints. For each case, we show that the CSG problem is NP-hard, and the size
of a problem instance is naturally measured by the number of rules rather than the number
of agents. Furthermore, as an initial step toward developing efficient constraint optimiza-
tion algorithms for solving the CSG problem, we give a mixed integer programming (MIP)
formulation that captures the above structure. We show that an off-the-shelf optimization
package (CPLEX) can solve the resulting MIP problem instances reasonably well.

1.1 Related works

This subsection briefly explores related work. Traditional models of coalitional game theory
often assume that the characteristic function is super-additive, forming the grand coalition
is guaranteed to be optimal, and the main research topic in economics is how to divide
the gain of the grand coalition among agents. The traditional theory of coalitional games
provides a number of solution concepts, such as the core [10], the Shapley value [34], and
the nucleolus [33]. The main research topic in computer science is to analyze the computa-
tional complexity of problems related to these solution concepts. Since the seminal work by
Megiddo [19], many works have been conducted, e.g., [8,9,11,12,17].

More recently, AI andMAS researchers have been considering the case where the charac-
teristic function is not super-additive, i.e., where forming the grand coalition is not optimal.
Often, in such a case, agents should form a coalition structure to maximize the reward they
can obtain. This is called the coalition structure generation (CSG) problem, which has been
an active research topic in AI and MAS.1 Many algorithms for solving the CSG problem
have been developed. For example, as we mentioned in the introduction, Sandholm et al. [31]
develop an anytime algorithm with worst-case guarantees, and Rahwan et al. [29] develop
another anytime algorithm called IP, while Rahwan and Jennings [25] develop a dynamic
programming (DP) based algorithm, which runs in O(3n). Furthermore, Michalak et al. [21]
develop an algorithm called ODP-IP by combining the anytime and the DP approaches. To
the best of our knowledge, the state-of-the-art algorithm is ODP-IP, which just takes seconds
to solve an instance with 25 agents.

The above works assume that a characteristic function is given as a black-box function.
However, representing that function requires an exponential number of agent combinations.

1 See [28] for a comprehensive survey of many results in this literature.
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Thus, several concise representation schemes for a characteristic function have been pro-
posed: marginal contribution nets (MC-nets) [14], synergy coalition groups (SCGs) [6], and
SCGs in multi-issue domains (SCGs in MID) [5]. It is natural to believe that utilizing the
structure of a concise representation scheme helps us developmore efficient CSG algorithms.
Subsequent to our first conference paper on this topic [24], several papers discuss the CSG
problem under some concise representation. For example, Ueda et al. [39] considers the
CSG problem where the value of a coalition is calculated by solving a distributed constraint
optimization problem [22]. Aziz and de Keijzer [1] and Ueda et al. [40] studied the CSG
problem under an agent-type representation where agents are partitioned into several types
and agents with the same type are identical.

Mixed integer programming (MIP) is a useful technique to solve an optimization problem
like the CSG problem.As another work utilizingMIP technique beside our work, Tran-Thanh
et al. [37] have proposed the coalitional skill vector model. In their model, there exists a set
of skills and each agent has a skill vector which represents the agents’ level. They formalized
the CSG problem as a MIP formulation. Since their representation is different from our three
representations, their MIP formulation has a different structure: 2n decision variables with
an exponential number of constraints. To solve this MIP formulation, they formalized an LP
relaxation problem and its dual problem. Then they developed a constraint generation based
algorithm that solved the instances with 500 agents in less than an hour.

While the value of a coalition depends on its agents in characteristic function games, it
can be affected by how the others are partitioned if we consider real-world applications.
Such a game, which is represented by a partition function, is called a partition function game
(PFG) [36]. In economics, the above solution concepts are extended to handle suchgameswith
externalities. The representative solution concepts include the Myerson value [23], which is
an extension of the Shapley value for PFG.On the other hand, associated computational prob-
lems have been considered by AI and MAS researchers. Rahwan et al. [27] first considered
the CSG problem in the restricted classes of PFGs where only positive or negative external-
ities exist. Michalak et al. [20] extend MC-nets to handle externalities, and their proposed
representation is called the embedded MC-nets representation. Skibski et al. [35] propose
another representation called Partition Decision Trees and developed efficient algorithms that
compute the extensions of the Shapley value in polynomial time.

Another research line in AI and MAS considers games on graphs. In these researches,
the existence of an underlying graph is assumed, and the graph represents, for example, a
communication network among agents. Voice et al. [42] introduced the independence of
disconnected members (IDM) property in which two agents do not affect each other if they
are disconnected on the graph. They formalized a graph coalition structure problem (GCSG)
where a characteristic function satisfies the IDM property and examined the computational
complexity of GCSG. They also developed algorithms for various types of graphs. Further-
more, Voice et al. [43] proposed Coalition Formation with Sparse Synergies (CFSS), where
a coalition is feasible if and only if there exists a connected subgraph of the given underlying
graph. However, a CSG algorithm for CFSS will be inefficient since the search space grows
exponentially with regards to the number of agents. To overcome this issue, Bistaffa et al. [2]
proposed an anytime algorithm, which provides an anytime solution with quality guarantees.

Rahwan et al. [26] proposed a very general framework for constrained coalition formation
(CCF) games. Even though SCG and CCF utilize an organizer’s knowledge of the relations
among the agents, they have different properties for representing games. Assume an organizer
only knows (1) coalitions where the synergies exist, and (2) the values of these coalitions.
If the synergies are sparse, the organizer can directly and concisely represent her knowledge
using SCG. It is possible to represent her knowledge on (1) using CCF, where the synergies
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are represented as positive constraints. However, using CCF, the organizer must provide a
characteristic function as well. In principle, a characteristic function takes any coalition as
its argument and returns its value, regardless of the coalition has synergy or not. It is not
obvious whether the organizer can concisely represent such a characteristic function. If we
explicitly represent a characteristic function as a table,we requireO(2n) space. Liao et al. [18]
proposed a CSG algorithm that utilizes an MaxSAT solver. However, their SAT encoding
method is for characteristic function games and cannot handle partition function games in
which externalities exist among coalitions. On the other hand, our method can handle a
partition function game represented as embedded MC-nets. Iwasaki et al. [15] develop an
empirically efficient algorithm for computing imputation in such situations. They further
propose a new solution concept called weak ε-core+.

2 Model

2.1 Characteristic function games

Let A be the set of all agents, where |A| = n. We assume a characteristic function game,
i.e., the value of coalition S is given by characteristic function v. Characteristic function
v : 2A → R assigns a value to each set of agents (coalition) S ⊆ A. Without loss of
generality, we assume ∀S ⊆ A, v(S) ≥ 0 holds. As previously shown [31], even if some
coalitions’ values are negative, as long as each coalition’s value is bounded (i.e., not infinitely
negative), we can normalize the coalition values so that all the values are non-negative. This
rescaled game is strategically equivalent to the original game.

Coalition structure generation (CSG) involves partitioning a set of agents into coalitions to
maximize the social surplus. Coalition structureCS is a partition of A into disjoint, exhaustive
coalitions. To be more precise, CS = {S1, S2, . . .} satisfies the following conditions:

∀i, j (i �= j), Si ∩ S j = ∅,
⋃

Si∈CS

Si = A.

In other words, in CS, each agent belongs to exactly one coalition, and some agents may be
alone in their coalitions.

For example, in a game with three agents, a, b, and c, there are seven possible coali-
tions: {a}, {b}, {c}, {a, b},{b, c}, {a, c}, {a, b, c}, and five possible coalition structures:
{{a}, {b}, {c}}, {{a, b}, {c}}, {{a}, {b, c}}, {{b}, {a, c}}, {{a, b, c}}.

We denote by Π(A) the space of all coalition structures over A. The value of coalition
structure CS, denoted as V (CS), is given by:

V (CS) =
∑

Si∈CS

v(Si ).

Optimal coalition structure CS∗ satisfies the following condition:

∀CS ∈ Π(A), V (CS∗) ≥ V (CS).

We say a characteristic function is super-additive, if for any disjoint sets Si , S j , v(Si ∪ S j ) ≥
v(Si ) + v(S j ) holds. If the characteristic function is super-additive, solving CSG becomes
trivial, i.e., the grand coalition (the coalition of all agents) is optimal.

Super-additivity means that any pair of coalitions is better off by merging into one. One
might think that super-additivity holds in most cases since the agents in the composite coali-
tion can work separately and perform at least as well as the case when they were in different
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coalitions. However, organizing a large coalition can be costly; e.g., there might be coordi-
nation overhead like communication costs or anti-trust penalties. Also, if time is limited, the
agents might not have time to carry out the communications and computations required for
effective coordination within the composite coalition, so component coalitions may be more
advantageous. In any case, even if the characteristic function is superadditive for the simple
reason that agents in a composite coalition can always choose to work separately in subteams
of the coalition, this still leaves the problem of finding the optimal subteam structure, which
is the same problem as the CSG problem we face here. That is, in this case probably the
most natural representation of the characteristic function v is a function v′ that gives the
values of coalitions without considering that they can work in subteams, and we would have
to solve the CSG problem with respect to v′. Thus, we assume a characteristic function can
be non-super-additive.

Example 1 Assume four agents, a, b, c, and d . The characteristic function is given as fol-
lows:

v({a}) = 3, v({b}) = 3, v({c}) = 2,
v({d}) = 2, v({a, b}) = 6, v({a, c}) = 5,
v({a, d}) = 5, v({b, c}) = 5, v({b, d}) = 5,
v({c, d}) = 2, v({a, b, c}) = 8, v({a, b, d}) = 8,
v({a, c, d}) = 5, v({b, c, d}) = 5, v({a, b, c, d}) = 5.

In this case, there exist multiple optimal CSs. For example, {{a, b, c}, {d}} and
{{a, b, d}, {c}} are optimal CSs, and the value of these CSs is 10.

2.2 Compact representations

Let us briefly describe three existing compact representation schemes: marginal contribu-
tion nets, synergy coalition groups, and multi-issue domains. We first introduce a concise
representation of a characteristic function called marginal contribution networks (MC-nets),
developed by Ieong and Shoham [14].

Definition 1 (MC-nets) An MC-net consists of a set of rules R. Each rule r ∈ R is of the
following form: (Lr ) → vr , where Lr is the condition of this rule, which is a conjunction
of literals over A, i.e., a1 ∧ · · · ∧ ak ∧ ¬ak+1 ∧ · · · ∧ ¬am . We call Pr = {a1, . . . , ak}
positive literals and Nr = {ak+1, . . . , am} negative literals. We say that rule r is applicable
to coalition S if Lr is true when the values of all Boolean variables that correspond to the
agents in S are set to true, and the values of all Boolean variables that correspond to agents
in A \ S are set to false, i.e.,∧a∈S a∧∧

b∈A\S ¬b |� Lr holds. For coalition S, v(S) is given
as

∑
r∈RS

vr , where RS is the set of rules applicable to S. Thus, for coalition structure CS,
V (CS) is given as

∑
S∈CS

∑
r∈RS

vr .

In MC-nets, the condition of a rule must be the conjunctions of some literals. Such a rule is
basic. Also, we call a rule that has amore complicated condition a non-basic rule. A non-basic
rule must be transformed into multiple basic rules, whose conditions are disjointed from each
other. For example, a non-basic rule, which has form (a ∨ b ∨ c) → v, is transformed into
three basic rules: (a) → v, (¬a∧b) → v, and (¬a∧¬b∧c) → v. Furthermore, without loss
of generality, we assume each rule has at least one positive literal. For example, if a rule has
form ¬a1 → 1 and there exist agents a1, a2, . . . , an , we can create the following equivalent
rules: ¬a1 ∧ a2 → 1,¬a1 ∧ ¬a2 ∧ a3 → 1, . . . ,¬a1 ∧ ¬a2 ∧ · · · ∧ ¬an−1 ∧ an → 1.
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Example 2 Assume five agents, a, b, c, d, and e, and four rules: r1 : (b ∧ e) → 3, r2 :
(a ∧ b ∧ c ∧ ¬d) → 2, r3 : (a ∧ d) → 1, and r4 : (c ∧ ¬e) → 1. In this case, r1 and
r2 are applicable to coalition {a, b, c, e}, but r3 and r4 are not. Thus, v({a, b, c, e}) equals
3 + 2 = 5.

Next we describe a concise representation of a characteristic function called a synergy
coalition group (SCG), introduced by Conitzer and Sandholm [6]. The main idea is to explic-
itly represent the value of a coalition only when there exists some positive synergy.

Definition 2 (SCG) An SCG consists of a set of pairs of the following form: (S, v(S)). For
any coalition S, the value of the characteristic function is

v(S) = max

⎧
⎨

⎩
∑

Si∈pS

v(Si )

⎫
⎬

⎭ ,

where pS is a partition of S, i.e., all the Si are disjoint and
⋃

Si∈pS Si = S, and for all the Si ,
(Si , v(Si )) ∈ SCG. To avoid senseless cases that have no feasible partitions, we require that
({a}, 0) ∈ SCG whenever {a} does not receive a value elsewhere in SCG.

Thus, if the value of coalition S is not given explicitly in SCG, it is calculated from the
possible partitions of S. Using this original definition, we can represent only super-additive
characteristic functions, i.e., for any disjoint sets Si , S j , v(Si ∪ S j ) ≥ v(Si ) + v(S j ) holds.
But, as mentioned in Sect. 2.1, if the characteristic function is super-additive, solving CSG
becomes trivial: the grand coalition is optimal. To allow for characteristic functions that are
not super-additive, we add the following requirement on partition pS :

– For all possible subsets p′
S of partition pS where |p′

S | ≥ 2,
⎛

⎝
⋃

Si∈p′
S

Si , v

⎛

⎝
⋃

Si∈p′
S

Si

⎞

⎠

⎞

⎠ /∈ SCG

holds.

This additional condition requires that if the value of a coalition is explicitly given in
SCG, then we cannot further divide it into smaller subcoalitions to calculate the values. In
this way, we can represent negative synergies.

The (modified) SCG can represent any characteristic function, including characteristic
functions that are non-super-additive or even non-monotone. This is because in the worst
case, we can explicitly give the value of every coalition. Due to the additional condition, only
these explicit values can be used to calculate the characteristic function.

Example 3 Let there be five agents, a, b, c, d, and e, and let SCG = {({a}, 0),
({b}, 0), ({c}, 1), ({d}, 2), ({e}, 3), ({a, b}, 3), ({a, b, c}, 3)}.

In this case, there exists positive synergy between agents a and b, since v({a, b}) = 3 >

v(a) + v(b) = 0+ 0 = 0. On the other hand, there exists negative synergy among agents a,
b, and c. This is because v({a, b, c}) = 3 < v({a, b}) + v({c}) = 3+ 1 = 4, which does not
satisfy super-additivity. Thus, we cannot divide {a, b, c} into any subcoalitions to calculate
v{a, b, c}. Furthermore, when we calculate the value of a coalition including agents a, b, and
c, we use the value of {a, b, c}.

For S = {a, b, c, d, e}, the value of S is calculated by v({a, b, c}) + v({d}) + v({e}) =
3 + 2 + 3 = 8.
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Finally, we introduce the concept of a multi-issue domain [5]. In a multi-issue domain,
there are k independent issues. The overall value of a coalition is the sum of the values of
the coalition for individual issues. More specifically, we assume k characteristic functions
v1, v2, . . . , vk such that for any S ⊆ A, v(S) = ∑k

i=1 vi (S). If each vi can be represented
concisely, then this leads to a concise representation for v. In this paper, we assume that vi
is represented by SCGi .

Definition 3 (SCGs in multi-issue domains) We represent the characteristic function by
a vector of SCGs (SCG1, . . . , SCGk). For any S ⊆ A, v(S) = ∑k

i=1 vi (S), where vi is
calculated using SCGi . Also, for coalition structureCS, we denote Vi (CS) = ∑

S∈CS vi (S).
Thus, V (CS) = ∑k

i=1 Vi (CS).

Example 4 Assume four agents a, b, c, and d , and two SCGs : SCG1 = {({a}, 0), ({b}, 0),
({c}, 1), ({d}, 0), ({a, b}, 2), ({a, b, c}, 2)}, SCG2 = {({a}, 0), ({b}, 0), ({c}, 0), ({d}, 1),
({a, b, c}, 2)}. In this case, v({a, b, c}) is v1({a, b, c}) + v2({a, b, c}) = 2 + 2 = 4.

2.3 Partition function games

When externalities exist among coalitions, the value of a coalition depends on the coali-
tion structure to which it belongs. An embedded coalition is a pair (S,CS), where S ∈
CS ∈ Π(A). Denote the set of all embedded coalitions as M , i.e., M := {(S,CS) : CS ∈
Π(A), S ∈ CS}. A partition function is mapping w : M → R.

Example 5 Assume four agents, a, b, c, and d . A partition function is given as follows:

w({a}, {{a}, {b}, {c}, {d}}) = 1, w({b}, {{a}, {b}, {c}, {d}}) = 1,
w({c}, {{a}, {b}, {c}, {d}}) = 1, w({d}, {{a}, {b}, {c}, {d}}) = 3,
w({a, b}, {{a, b}, {c}, {d}}) = 3, w({c}, {{a, b}, {c}, {d}}) = 1,
w({d}, {{a, b}, {c}, {d}}) = 1, w({a}, {{a}, {b, d}, {c}}) = 1,
w({b, d}, {{a}, {b, d}, {c}}) = 1, w({c}, {{a}, {b, d}, {c}}) = 1,
w({a}, {{a}, {b}, {c, d}}) = 1, w({b}, {{a}, {b}, {c, d}}) = 1,
w({c, d}, {{a}, {b}, {c, d}}) = 4, w({a, c}, {{a, c}, {b}, {d}}) = 2,
w({b}, {{a, c}, {b}, {d}}) = 1, w({d}, {{a, c}, {b}, {d}}) = 3,
w({a}, {{a}, {b, c}, {d}}) = 1, w({b, c}, {{a}, {b, c}, {d}}) = 2,
w({d}, {{a}, {b, c}, {d}}) = 3, w({a, d}, {{a, d}, {b}, {c}}) = 1,
w({b}, {{a, d}, {b}, {c}}) = 1, w({c}, {{a, d}, {b}, {c}}) = 1,
w({a}, {{a}, {b, c, d}}) = 1, w({b, c, d}, {{a}, {b, c, d}}) = 2,
w({b}, {{b}, {a, c, d}}) = 1, w({a, c, d}, {{b}, {a, c, d}}) = 2,
w({c}, {{c}, {a, b, d}}) = 1, w({a, b, d}, {{a}, {a, b, d}}) = 3,
w({d}, {{d}, {a, b, c}}) = 1, w({a, b, c}, {{d}, {a, b, c}}) = 4,
w({a, b}, {{a, b}, {c, d}}) = 3, w({c, d}, {{a, b}, {c, d}}) = 2,
w({a, c}, {{a, c}, {b, d}}) = 2, w({b, d}, {{a, c}, {b, d}}) = 1,
w({a, d}, {{a, d}, {b, c}}) = 1, w({b, c}, {{a, d}, {b, c}}) = 2,
w({a, b, c, d}, {{a, b, c, d}}) = 4.

In this case, there are 4 optimal CSs. For example, {{a}, {b}, {c, d}} is one optimal CS, and
the value of this CS is 6.

The game defined in Example 5 has externalities. In particular, the value of {d} in
{{a}, {b}, {c}, {d}} is 3, whereas in {{c}, {d}, {ab}} it is 1. This means that the formation
of coalition {a, b} induced a negative externality of 2 on {d}.
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Michalak et al. [20] proposed a concise representation of a partition function called embed-
ded MC-nets, which is an extension of MC-nets.

Definition 4 (Embedded MC-nets) An embedded MC-nets consists of set of embed-
ded rules ER. Each embedded rule er ∈ ER has the following form: (L1)|(L2),

. . . , (Ll) → ver , where each L1, L2, . . . , Ll is a conjunction of literals over A. L1, which
we call the internal condition, is the condition that must be satisfied in the coalition that
receives the value. L2, . . . , Ll , which we call the external conditions, must be satisfied in
other coalitions. We say that embedded rule er is applicable to coalition S in CS if L1 is
applicable to S and each L2, . . . , Ll is applicable to some coalition S′ ∈ CS \ {S}. For
coalition S, w(S,CS) is given as

∑
er∈ER(S,CS)

ver , where ER(S,CS) is the set of embedded
rules applicable to S in CS.

Note that for an embedded rule, there exists an implicit constraint such that external
conditions must be satisfied in coalitions CS \ {S}. By adding each positive literal in internal
condition L1 to the negative literals of all external conditions L2, . . . , Ll as well as by adding
each positive literal in external conditions L2, . . . , Ll to the negative literals of internal
condition L1, we can explicitly represent this implicit constraint. We say an embedded rule
is in an explicit form if the above condition is satisfied. For example, if an original rule is
(a)|(b), (c) → v, its explicit form is (a∧¬b∧¬c)|(b∧¬a), (c∧¬a) → v. For simplicity,
in the rest of this paper, we assume each embedded rule is in an explicit form.

Example 6 Assume the following rules. Here, er1 is an embedded rule.

r1 : (a) → 1, r2 : (b) → 1,
r3 : (c) → 1, r4 : (d ∧ ¬a ∧ ¬b) → 3,
r5 : (a ∧ b) → 1, er1 : (d ∧ ¬a ∧ ¬b)|(a ∧ b ∧ ¬d) → −2.

IfCS = {{a, b}, {c}, {d}}, all the rules are applicable. Thus,V (CS) = 1+1+1+3+1−2 = 5.

3 MIP formulations of coalition structure generation

In this section, we consider coalition structure generation problems, assuming that a charac-
teristic function is given using one of the concise representations introduced in the previous
section. For each concise representation, we develop MIP formulations to solve the CSG
problem. We also analyze the computational complexity and show that finding an optimal
coalition structure is NP-hard.

3.1 Marginal contribution nets

We consider CSG problems when a characteristic function is given using MC-nets represen-
tations.

3.1.1 Difficulty of handling negative rules

In MC-nets representations, a set of rules corresponds to a coalition structure if each rule in
the set is applicable to some coalition in that coalition structure. Thus, if all rules are positive,
we can solve CSG problems by solving a reward maximization problem among the rules.
However, as shown in the following example, when there exist negative rules handling the
negative value rules for CSG problems is a challenging issue.
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Example 7 Assume three agents, a, b, and c, and three rules: r1 : (a ∧ b) → 3, r2 :
(b ∧ c ∧ ¬a) → 2, r3 : (a ∧ ¬c) → −3. In this game, R′ = {r1, r2} maximizes

∑
r∈R′ vr

and gives 2+ 3 = 5. R′ is applicable to {{a}, {b, c}}, and there is no such coalition structure
other than {{a}, {b, c}}. However, the correct value of this coalition structure is not 5 but
2 + 3 − 3 = 2 since r3 is also applicable to coalition {a}. In this case, The correct optimal
coalition structure is {{a, c}, {b}}, whose value is 3 and a corresponding rule set is {r2}.

In general, a negative reward in a reward maximization problem is a pest. When all rules
have positive values, choosing a rule never hurts. Thus, we can solve CSG problems by a
solver that tries to choose as many rules as possible under some constraints, which only
specify the conditions where rules cannot be selected at the same time. If we simply include
a negative value rule, the solver just ignores this rule if it is allowed to do so, since choosing it
hurts. Wemust describe the condition under which the solver is forced to choose this negative
value rule as a result of choosing several other positive value rules. Since such a condition
involves the interaction among multiple rules, it can be quite complicated and difficult to
handle efficiently.

To handle negative value rules, we introduce a full transformation approach and a dummy
rules approach. We show that the former approach is not scalable and that we can encode the
problem as a MIP formulation with the latter approach.

3.1.2 Full transformation approach

One might think that handling negative value rules is unnecessary, since every characteristic
function can be represented by only positive value rules as long as no coalition has a negative
value. Thus, we introduce an algorithm that we call a full transformation algorithm. We
assume that R is divided into two groups: sets of positive value rules R+ and negative value
rules R−.

Definition 5 (Full transformation algorithm) The full transformation algorithm is defined
as follows:

1. Set R′− = R−, R′+ = R+.
2. If R′− = ∅, return R′+.
3. Remove one rule rx : (Lx ) → −vx from R′−.
4. Remove one rule ri : (Li ) → vi from R′+, such that Lx ∧ Li �|� ⊥. If no such rule exists,

return failure.
5. If ¬Lx ∧ Li �|� ⊥, create a set of basic rules that is the transformation of non-basic rule

(¬Lx ∧ Li ) → vi . Add them to R′+.
6. Create new basic rule (Lx ∧ Li ) → vi − vx . If vi − vx > 0, add this rule to R′+. If

vi − vx < 0, add it to R′−.
7. If Lx ∧ ¬Li �|� ⊥, create a set of basic rules that is the transformation of non-basic rule

(Lx ∧ ¬Li ) → −vx . Add them to R′−. Go to 2.

Let us explain the basic ideas of this algorithm. Since we assume that ∀S, v(S) ≥ 0 holds,
if negative value rule rx : (Lx ) → −vx is applicable to coalition S, there exists at least
one positive value rule ri : (Li ) → vi , which is also applicable to S. In other words, ri can
partially eliminate the effect of rx . We transform rx and ri into the following three rules:

r ′
1: (¬Lx ∧ Li ) → vi , which is added in Step 5,
r ′
2: (Lx ∧ Li ) → vi − vx , which is added in Step 6, and
r ′
3: (Lx ∧ ¬Li ) → −vx , which is added in Step 7.
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It is obvious that the two original rules, rx and ri , and these three rules are equivalent. Since
r ′
1 and r

′
3 are non-basic, they must be transformed into multiple basic rules.

Using negative value rules can reduce the efforts for describing a characteristic function.
In fact, the representation size might significantly increase when we describe a characteristic
function by only positive value rules. We here provide an upper bound of the number of
transformed rules, although the details of results related to the naïve approach are explained
in the Appendix. Consider l agents that are involved in negative value rules in a MC-net.
Since l − 1 dummy rules are created to handle the agents, the number does not exponentially
increase. The naïve transformation generates an exponential number of rules with respect to
the number of original rules.

Before proceeding to the analysis, we restrict our attention to a set of rules that we consider
a minimum rule set.

Definition 6 (Minimum rule set) Set of rules M is a minimum rule set if

– the value of each coalition represented by M is non-negative,
– M has at least one negative value rule,
– if any positive value rule is excluded from M , the remaining set of rules is not a minimum

rule set, and
– M is not divided into multiple disjoint minimum rule sets.

From the definition, an arbitrary set of rules M that is not minimum is divided into some
disjoint minimum rule set and some positive value rules (that are not minimum). We divide
the disjoint minimum rule sets into a collection of rule sets, each of which is a minimum rule
set, transform the negative value rules therein into positive value rules, and obtain a rule set
with only positive value rules, in conjunction with non-minimum positive value rules, which
is equivalent to M .

Let us first consider rule set M with one positive value rule r+ and one negative value
rule r−. Assume that there exist n agents and define the rules as follows:

r+ : (L+) → v+
r− : (L−) → −v−.

We show that the upper bound of the number of transformed rules is O(n). We classify
the possible coalitions with n agents into those to which each combination of the rules is
applicable. In this case, we need to consider two kinds of coalitions: one to which r+ and r−
are applicable, and another to which only r+ is applicable. Let D1 denote the former set of
coalitions and let D2 denote the latter set. The conditions and values are described as

D1 : (L+ ∧ L−) → v+ − v−,

D2 : (L+ ∧ ¬L−) → v+.

It is clear that we require only a single positive value rule, which is applicable to each element
of D1. In contrast, since the condition for D2, i.e., (L+ ∧ ¬L−), includes the negation of
L−, it is the disjunction of the conditions. We need to transform it into the conjunction of
the disjoint ones. For example, assume that L− is (a ∧ b ∧ ¬c). We then divide negation
¬L− = (¬a ∨ ¬b ∨ c) into three disjoint conditions, (¬a), (a ∧ ¬b), and (a ∧ b ∧ c). How
many conditions we require depends on the number of literals contained in¬L−. Since¬L−
involves all the agents in the worst case, it is divided into n conditions. Thus, we require
O(n) rules to create a rule set with only positive value rules, which is equivalent to M .
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Next, consider general rule set M with k positive value rules and s negative value rules.
Again assume that there exist n agents and define the rules as follows:

r+
i : (L+

i ) → v+
i (1 ≤ i ≤ k)

r−
j : (L−

j ) → −v−
j (1 ≤ j ≤ s).

Nextwe show that the upper bound of the number of transformed rules is O(2(k+s) ·n(k+s−1)).
We classify the possible coalitions with n agents into those to which each combination of
the rules is applicable. In this case, the number of their collections is 2k+s . However, since
the values of any coalition are non-negative based on the assumption, we need to exclude
2s cases where no positive value rules are applied. Thus, we consider 2k+s − 2s kinds of
coalitions:

D1 : (L+
1 ∧ · · · ∧ L+

k ∧ L−
1 ∧ L−

2 ∧ · · · ∧ L−
s−2 ∧ L−

s−1 ∧ L−
s )

→ v+
1 + · · · + v+

k − v−
1 − v−

2 − · · · − v−
s−2 − v−

s−1 − v−
s

D2 : (L+
1 ∧ · · · ∧ L+

k ∧ L−
1 ∧ · · · ∧ L−

s−2 ∧ L−
s−1 ∧ ¬L−

s )

→ v+
1 + · · · + v+

k − v−
1 − · · · − v−

s−2 − v−
s−1

D3 : (L+
1 ∧ · · · ∧ L+

k ∧ L−
1 ∧ · · · ∧ L−

s−2 ∧ ¬L−
s−1 ∧ L−

s )

→ v+
1 + · · · + v+

k − v−
1 − · · · − v−

s−2 − v−
s

D4 : (L+
1 ∧ · · · ∧ L+

k ∧ L−
1 ∧ · · · ∧ L−

s−2 ∧ ¬L−
s−1 ∧ ¬L−

s )

→ v+
1 + · · · + v+

k − v−
1 − · · · − v−

s−2

. . .

D(2k+s−2s ) : (¬L+
1 ∧ · · · ¬L+

k−1 ∧ L+
k ∧ ¬L−

1 ∧ · · · ∧ ¬L−
s )

→ v+
k .

Consider collection of coalitions Di (1 ≤ i ≤ 2k+s − 2s). As well as the case with one
positive and one negative value rule, the number of required conditions depends on how
many negations are involved in the conditions of Di . Thus, we require O(nk+s−1) rules
to create a positive value rule set, which is equivalent to the conditions of Di . For all Di ,
we require O(2k+s · nk+s−1) to create a positive value rule set, which is equivalent to M .
Accordingly, this naive transformation generates an exponential number of rules with respect
to k and s in the worst case. Our approach with dummy rules which we introduce later is
computationally more tractable.

3.1.3 Dummy rules approach

Instead of transforming negative value rules into positive value rules, we introduce the idea of
using dummy rules as another way of handling negative value rules that is more concise and
efficient. Before introducing dummy rules, we define a feasible set to represent a coalition
structure by a set of rules.

Definition 7 (Feasible rule set) We say set of rules R′ ⊆ R is feasible if there exists a CS,
where each rule r ∈ R′ is applicable to some S ∈ CS and ∀r− ∈ R− \ R′, r− is not applicable
to any S ∈ CS.

Clearly, for each coalition structure CS, there exists at least one feasible rule set R′ ∈ R
such that R′ is applicable to CS and V (CS) = ∑

r∈R′ vr holds. Thus, the problem of finding
CS∗ is equivalent to finding feasible rule set R′ to maximize

∑
r∈R′ vr .
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In Example 2, {r2, r4} is feasible because it is applicable to {{a, b, c}, {d, e}} and the
value of each rule is not negative. R′ = {r1, r2} is also feasible because R′ is applicable
to {{a, b, c, e}{d}}. Since R′ maximizes

∑
r∈R′ vr , {{a, b, c, e}{d}} is the optimal coalition

structure, whose value is 5. On the other hand, {r1, r2, r4} and {r2, r3} are infeasible because
there is no coalition structure where all the sets of rules are applicable. Let us consider another
example that contains negative value rules.

We add dummy rules to directly encode the problem as a MIP formulation as follows.

Definition 8 (Dummy rules (for basic rules)) Assume there exists negative value rule rx :
(Lx ) → −vx (vx > 0), where Lx = ∧

ai∈Px ai ∧ ∧
a j∈Nx

¬a j , Px = {a1, a2, . . . ak}, Nx =
{ak+1, ak+2, . . . , am}. Dummy rules generated by this negative value rule are of the following
two types:

(i) (a1 ∧ ¬ai ) → 0, where ai ∈ Px \ {a1},
(ii) (a1 ∧ a j ) → 0, where a j ∈ Nx .

We denote D(Lx ) as a set of dummy rules created from Lx .

Theorem 1 A negative value rule is applicable to a coalition in coalition structure CS if
and only if none of its dummy rules are applicable to any coalition in CS.

Proof The condition of a dummy rule can be either a1∧¬ai or a1∧a j . In either case, it is clear
that when this dummy rule is applicable to a coalition in CS, the negative value rule is not
applicable to any coalition in CS. Also, if all dummy rules are inapplicable to any coalition
in CS, it means that a1, a2, . . . , ak are in identical coalition S, while ak+1, ak+2, . . . , am are
not in S. Thus, the negative value rule is applicable to S. ��

With dummy rules, we can describe the condition where the solver is forced to choose
this negative value rule. In brief, we add a constraint where at least one of a negative value
rule and the dummy rules created from that rule must be chosen. Note that, from Theorem 1,
if no dummy rule created by a negative value rule is chosen, there must exist a coalition such
that the negative value rule is applicable, and the solver must choose the rule.

Then we classify the relations between rules to specify the conditions where they cannot
be selected at the same time.

Definition 9 (Relation between rules) The possible relations between two rules, r and r ′,
can be classified into the following four nonoverlapping and exhaustive cases:

Compatible on the same coalition: Pr ∩ Pr ′ �= ∅ and Pr ∩ Nr ′ = Pr ′ ∩ Nr = ∅. For
example, in Example 2, r1 and r2 are compatible on the same coalition; if r1 and r2 are
applicable at the same time, there must be a coalition S with S ⊇ {a, b, c, e} and d /∈ S.
Incompatible: Pr ∩ Pr ′ �= ∅, and (Pr ∩ Nr ′ �= ∅ or Pr ′ ∩ Nr �= ∅). For example, r2 and
r3 are incompatible; these two rules are not applicable at the same time.
Compatible on different coalitions: Pr ∩ Pr ′ = ∅, and (Pr ∩ Nr ′ �= ∅ or Pr ′ ∩ Nr �= ∅).
For example, r1 and r4 are compatible on different coalitions; if r1 and r4 are applicable
at the same time, there must be two different coalitions, S1 and S2, where S1 ⊇ {b, e}
and S2 ⊇ {c}.
Independent: Pr ∩ Pr ′ = ∅, and Pr ∩ Nr ′ = Pr ′ ∩ Nr = ∅. For example, r1 and r3
are independent. These two rules can be applied to the same coalition or to different
coalitions.

Let us consider a graphical representation of an MC-net in which each vertex is a rule,
and between any two vertices, there exists an edge whose type is one of the four cases

123



516 Auton Agent Multi-Agent Syst (2018) 32:503–533

Fig. 1 Graphical representation
of Example 2

r4
({c}, {e})

r1
({b, e}, {})

r3
({a, d}, {})

r2
({a, b, c}, {d})

compatible on 
different coalitions

compatible on 
the same coalition

incompatiblecompatible on 
the same coalition

described above. “compatible on the same coalition”, “incompatible”, “compatible on differ-
ent coalitions”, or “independent”. Figure 1 shows the graphical representation of Example 2
(“independent” edges are not shown).

Definition 10 (Consistent) Set of rules R′ is consistent if it satisfies the following conditions.

(a) R′ includes no pair of rules/vertices connected by an “incompatible” edge, and
(b) if two rules/vertices in R′ are connected by a “compatible on different coalitions” edge,

then they are not reachable via “compatible on the same coalition” edges within R′.

Consistency guarantees that set of rules R′ is applicable to some coalition structure. Let
us consider the set of rules in Example 2. Set of rules {r2, r3} does not satisfy (a) because r2
and r3 are connected by an “incompatible” edge. Then let us consider set of rules {r1, r2, r4}.
In this case, r1 and r4 are connected by a “compatible on different coalitions” edge but they
are reachable via r2 where both r1 and r4 are connected to r2 by “compatible on the same
coalition” edges. Thus, {r1, r2, r4} does not satisfy (b). An example of a consistent set of
rules is {r1, r3, r4}, which is applicable to coalition structure {{a, d}, {b, e}, {c}}.
Definition 11 (Covering rule set) Set of rules R′ covers all the negative value rules if,
∀r− ∈ R−, R′ includes either r− or at least one dummy rule created from r−.

By using a notion of consistency and a covering rule set, we can characterize feasible rule
sets and the following theorems hold.

Theorem 2 Set of rules R′ is applicable to some coalition structure if and only if R′ is
consistent.

Proof First, we prove the “if” part. From (a), there exists no incompatible edge within
R′. From (b), R′ can be divided into groups G1,G2, . . . ,Gk where the rules within Gi

are reachable from each other by “compatible on the same coalition” edges, there exists
no “compatible on different coalitions” edge between the rules in Gi , and there exists no
“compatible on the same coalition” edge between rules that belong to different groups.

Let us choose CS = {S1, S2, . . . , Sk} so that Si is the union of all positive literals of
r ∈ Gi . Then, for i �= j , Si ∩ S j = ∅ holds. This is because Si ∩ S j �= ∅ implies that there
exists at least one pair r ∈ Gi , r ′ ∈ G j for which r and r ′ are connected by a “compatible
on the same coalition” edge (since there cannot be an “incompatible” edge between them).
But this contradicts the way in which G1, . . . ,Gk are chosen. Thus, {S1, . . . , Sk} is a valid
coalition structure.2

2 If some agent is not included in any Si , we can assume it forms its own coalition.
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Next, we show that for any r ∈ Gi , r is applicable to coalition Si . Clearly, Si contains all
the positive literals of r . It remains to be shown that Si does not contain any negative literals
of r . For the sake of contradiction, assume Si contains agent a, where a is a negative literal
of r . Then there exists another rule r ′ ∈ Gi for which a is a positive literal. There must be a
“compatible on different coalitions” or an “incompatible” edge between r and r ′. Either case
leads to a contradiction. Hence, R′ is applicable to CS.

Next, we prove the “only if” part. If R′ does not satisfy the above conditions, then there
exists no coalition structure where R′ is applicable. Clearly, if (a) is not satisfied, i.e., some
r, r ′ ∈ R′ are connected by an “incompatible” edge, then there exists no coalition structure
where r and r ′ are applicable at the same time.

Now, assume (b) is not satisfied, i.e., there exist ri , r j ∈ R′ such that ri and r j are connected
by a “compatible on different coalitions” edge and are reachable by “compatible on the same
coalition” edges within R′. Assume ri is applicable to coalition Si and r j is applicable to
coalition S j . Since ri and r j are connected by a “compatible on different coalitions” edge,
Si and S j must be different. However, Si must contain all of the positive literals of the rules
reachable from ri via “compatible on the same coalition” edges; otherwise, some rule in R′
is not applicable. Similarly, S j must contain all the positive literals of rules reachable from
r j via “compatible on the same coalition” edges. Since ri and r j are reachable from each
other via “compatible on the same coalition” edges, Si and S j must be the same; but this
contradicts the fact that they must be different. ��

Theorem 3 Set of rules R′ is feasible if it is consistent and covers all the negative value
rules. Furthermore, for any feasible rule set R′ (which does not cover all the negative values),
there exists another rule set R′′(⊇ R′) where

∑
r∈R′′ vr = ∑

r∈R′ vr and R′′ is consistent
and covers all the negative value rules.

Proof First, we prove that if R′ is consistent and covers all the negative value rules, it is
feasible. Since it is consistent, from Theorem 2, there exists coalition structure CS, such
that each rule r ∈ R′ is applicable to some S ∈ CS. Thus, to prove that R′ is feasible, it
suffices to show that ∀r− ∈ R− \ R′, r− is not applicable to any S ∈ CS. Since R′ covers
all the negative value rules, for each negative value rule r− ∈ R− \ R′, R′ contains at least
one dummy rule created from r− and that rule is applicable to some S ∈ CS. Thus, from
Theorem 1, ∀r− ∈ R− \ R′, r− is not applicable to any S ∈ CS.

Next, we prove that for any feasible rule set R′, there exists rule set R′′ s.t. R′′ ⊇
R′,

∑
r∈R′′ vr = ∑

r∈R′ vr , and R′′ is consistent and covers all the negative value rules.
Since R′ is a feasible rule set, there exists CS, where each rule r ∈ R′ is applicable to some
S ∈ CS and ∀r− ∈ R− \ R′, r− is not applicable to any S ∈ CS. Note that R′ is consistent.
Now, for each negative value rule r− ∈ R− \ R′, we show that if R′ does not contain any
dummy rule of r−, we can add at least one dummy rule rd to R′ such that rd is applicable
to some coalition in CS, and thus R′ ∪ {rd} is consistent. We prove this by contradiction;
by assuming that for each dummy rule rd of r−, rd is not applicable to any coalition in CS.
There exists S′ ∈ CS such that a1 ∈ S′. From the way dummy rules are created, S′ contains
all the positive literals of r−. If this is not the case, i.e., S′ does not contain positive literal
ai , then the dummy rule (a1 ∧ ¬ai ) → 0 is applicable to S′. Also, S′ contains no negative
literal of r−. If this is not the case, i.e., S′ contains one negative literal a j , then the dummy
rule (a1 ∧ a j ) → 0 is applicable to S′. However, since S′ contains all of the positive literals
of r− and no negative literals of r−, r− is applicable to S′. This contradicts the assumption
that r− is not applicable to any S ∈ CS. Thus, there exists at least one dummy rule rd such
that rd is applicable to some coalition in CS, and thus R′ ∪ {rd} is consistent.
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By continuing to add dummy rules to R′, we obtain rule set R′′ that is consistent and
covers all the negative value rules. It is clear that for R′′,

∑
r∈R′′ vr = ∑

r∈R′ vr holds since
the value of a dummy rule is 0.

Hence, for any feasible rule set R′, there exists rule set R′′ s.t. R′′ ⊇ R′,
∑

r∈R′′
vr = ∑

r∈R′ vr , and R′′ is consistent and covers all the negative value rules. ��
From Theorem 3, when considering feasible rule sets, we can restrict our attention to rule

sets that are consistent and cover all negative value rules without loss of generality.

Theorem 4 When the characteristic function is represented as anMC-net, finding an optimal
coalition structure is NP-hard. Moreover, unless P = NP , there exists no polynomial-time
O(|R|1−ε) approximation algorithm for any ε > 0, where |R| is the number of rules.
Proof The maximum independent set problem is to choose V ′ ⊆ V for a graph G = (V, E)

such that there exists no edge between vertices in V ′, and |V ′| is maximized under this
constraint. It is NP-hard, and unless P = NP , there exists no polynomial-time O(|V |1−ε)

approximation algorithm for any ε > 0 [13,45]. We reduce an arbitrary maximal inde-
pendent set instance to a CSG problem instance as follows. For each v ∈ V , let there
be agent av; also, for each e ∈ E , let there be agent ae. For each v ∈ V , we create a rule
rv : (

∧
ai∈Prv

ai ∧ ∧
a j∈Nrv

¬a j )where Prv = {av}∪{ae : v ∈ e}, Nrv = {aw : (v,w) ∈ E}.
Thus, rules are “incompatible” if they correspond to the neighboring vertices and “indepen-
dent” otherwise. It follows that feasible rule sets correspond exactly to the independent sets
of vertices. ��

The reduction in Theorem 4 relies heavily on the “incompatibilities” between rules. If
there are no “incompatibilities,” then the problem is equivalent to the multi-cut problem [41],
which is a generalization of the min-cut problem. Note that even without negative value rules,
finding an optimal coalition structure using MC-nets is NP-hard.

A CSG using MC-nets can be modeled as finding a rule set that satisfies the condition in
Theorem 3 and maximizes the sum of the values.

Definition 12 (MIP formulation of CSG for MC-nets) The problem of finding feasible rule
set R′ that maximizes

∑
r∈R′ vr can be modeled as follows:

max
∑

r∈R vr · x(r)
s.t.∀e = (r, r ′), where e is an “incompatible” edge,

x(r) + x(r ′) ≤ 1, — (i)
∀e = (ri , r j ), where e is

a “compatible on different coalitions” edge and i < j ,
dis(e, ri ) = 0, dis(e, r j ) ≥ 1, — (ii)
∀e′ = (r1, r2), where e′ is

a “compatible on the same coalition” edge,
dis(e, r1) ≤ dis(e, r2) + (1 − x(r1)) + (1 − x(r2)), — (iii)
dis(e, r2) ≤ dis(e, r1) + (1 − x(r1)) + (1 − x(r2)), — (iv)

∀r− ∈ R−, where d1, . . . , dk are the dummy rules of r−,
x(r−) + x(d1) + · · · + x(dk) ≥ 1, — (v)

∀r ∈ R, x(r) ∈ {0, 1}.
x(r) = 1 means that rule r is selected. Constraint (i) ensures that two rules connected by
an “incompatible” edge will not be selected at the same time. Also, for each “compatible on
different coalitions” edge e = (ri , r j ), we define a distance/potential for e, so thatdis(e, ri ) =

123



Auton Agent Multi-Agent Syst (2018) 32:503–533 519

0 and dis(e, r j ) ≥ 1 (ii). Constraints (iii) and (iv) ensure that if both r1 and r2 are selected,
where r1 and r2 are connected by a “compatible on the same coalition” edge, then the
distance/potential of these two rules for the aforementioned e must be equal. Then the facts
that dis(e, ri ) = 0 and dis(e, r j ) ≥ 1 ensure that ri and r j are not reachable from each other
via “compatible on the same coalition” edges. Using such a distance/potential is a standard
method for representing connectivity constraints in MIP formalization without enumerating
possible paths. Constraint (v) ensures that negative value rule r− or at least one dummy rule
created from r− is selected.

Example 8 Let us show how constraints (ii)–(iv) work with rules of MC-nets in Example 2.
Suppose that rules r1, r2 and r4 are selected, i.e., x(r1) = x(r2) = x(r4) = 1. Since
rules r1 and r4 are connected via “compatible on different coalitions” edge e14 = (r1, r4),
dis(e14, r1) = 0 and dis(e14, r4) ≥ 1 due to constraint (ii). For “compatible on the same
coalition” edge e12 = (r1, r2), from constraints (iii) and (iv), dis(e14, r1) ≤ dis(e14, r2) +
(1−x(r1))+(1−x(r2)) = dis(e14, r2)+(1−1)+(1−1) = dis(e14, r2) and dis(e14, r2) ≤
dis(e14, r1) + (1 − x(r1)) + (1 − x(r2)) = dis(e14, r1) must be hold. Therefore, we have
dis(e14, r1) = dis(e14, r2). Similarly, for “compatible on the same coalition” edge e24 =
(r2, r4), we have dis(e14, r2) = dis(e14, r4). Thus, we cannot satisfy constraints (ii)–(iv)
and select rules r1, r2 and r4 at the same time. Actually, set of rules {r1, r2, r4} is not feasible
because r1 and r4 are connected by a “compatible on different coalitions” edge but they are
reachable via “compatible on the same coalition” edges.

In this formulation, the number of binary variables equals the number of all the rules
including the dummy rules. The number of constraints is din+dcd(2dcs+1)+|R−|, where din ,
dcd ,dcs , and |R−| are the number of edgeswith types “incompatible,” “compatible ondifferent
coalitions,” “compatible on the same coalition,” and negative value rules, respectively.

3.1.4 Embedded MC-nets

We extend our method to find an optimal coalition structure when a partition function is
represented as an embedded MC-net.

Extending the MIP formulation in Definition 12 to handle embedded MC-nets is rather
straightforward. First, we explain how to handle embedded rules whose values are non-
negative. For an embedded rule that has form er : (L1)|(L2), . . . ,

(Ll) → ver , we create the following basic rules: r1 : (L1) → 0, r2 : (L2) → 0, …,
rl : (Ll) → 0. Assume x(er), x(r1), . . . , x(rl) are 0/1 decision variables in the MIP for-
mulation, i.e., when the value is 1, the rule is selected. An objective function is given by∑

er ver ·x(er). Also, we add a constraint where x(er) can be 1 onlywhen all x(r1), . . . , x(rl)
are 1. Note that such a constraint is not linear. However, there exists a well-known encoding
trick to represent such a non-linear constraint in MIP formulation [3].

Next, we introduce dummy rules to handle negative value embedded rules. For a negative
value embedded rule, we create dummy rules from each basic rule obtained by the rule.

Definition 13 (Dummy rules (for embedded rules)) Assume there exists negative value
embedded rule rx : (L1)|(L2), . . . , (Ll) → −vx (vx > 0). Then the dummy rules for rx
are

⋃
Li

D(Li ). Note that D(L) is a set of dummy rules created from L .

Theorem 5 A negative value embedded rule is applicable to a coalition with coalition struc-
ture CS if and only if all of its dummy rules are not applicable to any coalition in CS.
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We omit the proof since it is basically identical to Theorem 1.
Finally, we obtain an extended MIP formulation from Definition 12.

Definition 14 (MIP formulation of CSG using embedded MC-nets) The problem of finding
an optimal coalition structure can be modeled as follows:

max
∑

ver · x(er)
s.t.∀e = (r, r ′), where e is an “incompatible” edge,

x(r) + x(r ′) ≤ 1,
∀e = (ri , r j ), where e is

a “compatible on different coalitions” edge and i < j ,
dis(e, ri ) = 0, dis(e, r j ) ≥ 1,
∀e′ = (r1, r2), where e′ is

a “compatible on the same coalition” edge,
dis(e, r1) ≤ dis(e, r2) + (1 − x(r1)) + (1 − x(r2)),
dis(e, r2) ≤ dis(e, r1) + (1 − x(r1)) + (1 − x(r2)),

∀er , where r1, r2, . . . , rl are created from er ,
x(r1) + · · · + x(rl) ≤ l · x(er) + (l − 1 − x(er)), — (vi)
x(er) ≤ x(r1), …, x(er) ≤ x(rl), — (vii)

∀er−, where er− has a negative value and
d1, . . . , dk are the dummy rules of er−,
x(er−) + x(d1) + · · · + x(dk) ≥ 1, — (viii)

∀r ∈ R, x(r) ∈ {0, 1}.
In the MIP formulation, we add constraints (vi) and (vii) to the MIP formulation in

Definition 12 and replace the constraint of the dummy rules as (viii) from (v). Constraints
(vi) and (vii) ensure that, for each embedded rule er , er is selected if and only if all of the
rules in it are selected. Constraint (viii) ensures that negative value embedded rule er− or at
least one dummy rule created from the rules in er− is selected.

In this formulation, the number of binary variables equals the sum of the number of all
rules including dummy rules and the number of embedded rules. The number of constraints
is din + dcd(2dcs + 1) + |ER| + |ER−|, where |ER|, |ER−| are the number of embedded
rules and negative value rules, respectively.

3.2 Synergy coalition group

In this section, we develop an MIP formulation for finding an optimal coalition structure
when a characteristic function is represented as an SCG. We show that when searching for
CS∗, we need to consider only the coalitions that are explicitly described in SCG.

Theorem 6 There exists coalition structure CS for which V (CS) = V (CS∗) and ∀S ∈
CS, (S, v(S)) ∈ SCG.

Proof For the sake of contradiction, assume there exists someCS∗ so that V (CS∗) is strictly
larger than anyCS that only consists of elements of SCG. Let us examine coalition S ∈ CS∗
that is not an element of SCG. From the definition of SCG, there exists a partition of S
(denoted as pS) such that v(S) = ∑

Si∈pS v(Si ), and each Si is an element of SCG. Then,
by replacing each such S by pS , we obtain a new coalition structure CS that only consists of
elements of SCG, and V (CS) = V (CS∗) holds, so we have the desired contradiction. ��

Due to Theorem 6, finding CS∗ is equivalent to a weighted set packing problem: equiva-
lently to the winner determination problem in combinatorial auctions [30], where each agent
is an item and each coalition described in SCG is a bid.
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Theorem 7 When the characteristic function is represented as an SCG, finding an optimal
coalition structure is NP-hard. Moreover, unless P = NP , there exists no polynomial-time
O(|SCG|1−ε) approximation algorithm for any ε > 0.

Proof This follows directly from the corresponding inapproximability for the winner deter-
mination problem [30] and the maximum independent set problem [45]. ��
Definition 15 (MIP formulation of CSG for SCG) The problem of finding CS∗ can be mod-
eled as follows:

max
∑

(S,v(S))∈SCG

v(S) · x(S)

s.t. ∀a ∈ A,
∑

S�a
x(S) = 1,

x(S) ∈ {0, 1}.
x(S) is 1 if S is included in CS∗, 0 otherwise.

In this formulation (which corresponds to a standard winner determination formulation),
the number of binary variables equals |SCG|, and the number of constraints equals the
number of agents.

3.3 Multi-issue domain

When there are multiple issues, optimal coalition structure CS∗ may need to contain a
coalition S that is not explicitly described in any SCGi . For example, assume that in issue i ,
a and b have a strong positive synergy. Also, in issue j , b and c have strong positive synergy.
Then coalition {a, b, c} might need to be included in CS∗, even though {a, b, c} appears in
neither SCGi nor SCG j .

Definition 16 (Value-producing subset) Given coalition structure CS, we say that SCG ′
i

(where SCG ′
i ⊆ SCGi ) is a value-producing subset of SCGi for CS, if SCG ′

i con-
sists exactly of the elements of SCGi that are used to calculate Vi (CS). Thus, Vi (CS) =∑

(S,vi (S))∈SCG ′
i
vi (S).

In Example 4, SCG ′
1 = {({a, b, c}, 2), ({d}, 0)} and SCG ′

2 = {({a, b, c}, 2), ({d}, 1)} are
value-producing subsets for CS = {{a, b, c}, {d}}. From this definition, value-producing
subset SCG ′

i must contain all the agents, and the elements of SCG ′
i must be disjoint. We

call a subset that satisfies these conditions a valid subset.

Definition 17 (Valid subset) SCG ′
i ⊆ SCGi is a valid subset if

⋃
(S,vi (S))∈SCG ′

i
S = A, and

∀(S, vi (S)), (S′, vi (S′)) ∈ SCG ′
i where S �= S′, S ∩ S′ = ∅ holds.

Theorem 8 Valid subset SCG ′
i ⊆ SCGi is a value-producing subset of SCGi for CS if and

only if for each S ∈ CS, either one of the following conditions holds:

1. (S, vi (S)) ∈ SCG ′
i ,

2. ∃pS, where pS is a partition of S, such that |pS | ≥ 2, ∀S′ ∈ pS, (S′, vi (S′)) ∈ SCG ′
i ,

and ∀p′
S ⊆ pS, where |p′

S | ≥ 2, (
⋃

S′′∈p′
S
S′′, vi (

⋃
S′′∈p′

S
S′′)) /∈ SCGi .

We omit the proof since it is straightforward from the (modified) definition of SCG. Quite
interestingly, we can define the possible relations between elements in SCGs in the same
way as we did for MC-nets.
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Definition 18 (Relations between coalitions) The possible relations between two coalitions,
(S, vi (S)) ∈ SCGi and (S′, v j (S′)) ∈ SCG j , can be classified into the following four cases,
which are nonoverlapping and exhaustive:

Compatible on the same coalition: i �= j and S ∩ S′ �= ∅. For example, in Example 4,
({a, b}, 2) ∈ SCG1 and ({a, b, c}, 2) ∈ SCG2 are compatible on the same coalition. If
these two elements are part of the value-producing subsets at the same time, there must
be coalition S with S ⊇ {a, b, c}.
Incompatible: i = j and S∩S′ �= ∅. For example, ({a, b}, 2) ∈ SCG1 and ({a, b, c}, 2) ∈
SCG1 are incompatible; they cannot be used simultaneously.
Compatible on different coalitions: i = j , and there exists (S ∪ S′, vi (S ∪ S′)) ∈ SCGi .
Assume that SCGi contains ({a, b}, 2), ({c}, 1), and ({a, b, c}, 2). For coalition structure
CS that contains {a, b, c}, when SCG ′

i has ({a, b}, 2) and ({c}, 1), it is not a value-
producing subsets of SCGi because the second condition of Theorem 8 is violated. There
exists a partition {{a, b}, {c}} such that the joint coalition {a, b, c} is included in SCGi .
Therefore, the supersets of {a, b} and {c} must belong to different coalitions. Otherwise,
({a, b, c}, 2) is used to calculate vi . To bemore precise, this relationmust be extended to a
hyper-edge. If there exists (S′′, vi (S′′)) ∈ SCGi , such that∀Ŝ ∈ pS′′ , (Ŝ, vi (Ŝ)) ∈ SCGi

holds, where pS′′ is a partition of S′′, then we create a hyper-edge that connects the
elements in pS′′ . Note that we need to add (hyper-) edges only if the characteristic
function is sub-additive for S and S′ ( if S ∪ S′ has a value more than vi (S) + vi (S′), we
do not have to create such a hyper-edge.)
Independent: otherwise. For example, ({a, b}, 2) ∈ SCG1 and ({d}, 0) ∈ SCG1 are
independent. They can be used in both cases.

The following conditions characterize whether coalitions are value-producing.

Theorem 9 (SCG ′
1, . . . , SCG ′

k), where each SCG ′
i is a valid subset of SCGi , is a vector

of value-producing subsets for some CS if and only if the following conditions hold:

(a) (SCG ′
1, . . . , SCG ′

k) include no pair of coalitions connected by an “incompatible” edge,
and

(b) if a set of coalitions in (SCG ′
1, . . . , SCG ′

k) is connected by a “compatible on different
coalitions” hyper-edge, then there exists at least one element that is not reachable from
other elements via “compatible on the same coalition” edges.

We omit the proof since it is basically the same as that of Theorem 3.

Definition 19 (MIP formulation in multi-issue domains) The problem of finding value-
producing subsets that maximize the summation of values can be modeled as follows:

max
∑

p=(S,v∗(S))∈⋃k
i=1 SCGi

v∗(S) · x(p)
s.t.∀e = (p, p′), where e is an “incompatible” edge,

x(p) + x(p′) ≤ 1,
∀e = (p1, p2, . . . , pl), where e is

a “compatible on different coalitions” hyper-edge,
dis(e, p1) = 0, dis(e, p2) + · · · + dis(e, pl) ≥ 1, — (i)
∀e′ = (pi , p j ), where e′ is

a “compatible on the same coalition” edge,
dis(e, pi ) ≤ dis(e, p j ) + (1 − x(pi )) + (1 − x(p j )),
dis(e, p j ) ≤ dis(e, pi ) + (1 − x(pi )) + (1 − x(p j )),

∀p ∈ ⋃k
i=1 SCGi , x(p) ∈ {0, 1}.
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x(p) = 1 means element p in
⋃k

i=1 SCGi is selected. This formulation is basically the same
as Definition 12, except for constraint (i). This constraint means that for hyper-edge e that
connects nodes p1, p2, . . . , pl , at least one element must be unreachable. The numbers of
variables and constraints are basically the same as in the case of the MC-nets.

Theorem 10 When the characteristic function is represented as SCGs in a multi-issue
domain, finding an optimal coalition structure is NP-hard. Moreover, unless P = NP ,
there exists no polynomial-time O(m1−ε) approximation algorithm for any ε > 0, where m
is the number of elements in SCGs.

Proof We can use the same proof as Theorem 4. ��

4 Evaluation

4.1 Settings

We experimentally evaluate our proposed methods. All of the tests were run on a Core i7-
4790 processor with 32GB RAM on aWindows 8.1 Pro Edition. We used CPLEX 12.6.1 for
solving the integer programming problem instances.

Michalak et al. [21] report that their ODP-IP algorithm can solve problem instances with
25 agents in less than 100 seconds. We cannot directly compare our results with these results
since the CSG formalizations are different. Here, we are not comparing the efficiency of
particular algorithms, but checking the scalability of different formalizations. Their algorithm
inevitably evaluates all of the possible O(2n) coalitions. Thus, it is very unlikely that their
approaches can scale up to n = 100. On the other hand, the advantage of these approaches
is that they do not rely on particular representations.

Let us classify problem instances by how many agents are involved in each element of a
compact representation, i.e., a rule inMC-nets or a coalition in SCG.We concentrate on three
simple and typical cases that are likely to be observed in practice: (i) each element tends to
involve a small number of agents; (ii) each element tends to involve a large number of agents;
and (iii) there is no bias on the number of agents in each element, that is, each element involves
any number of agents with equal probability. Unfortunately, there exist no widely accepted
standard benchmark instances for coalition structure generation problems. Thus, in a similar
manner to Iwasaki et al. [15], we randomly generate instances using probability distributions,
described as follows. To generate problem instances, we choose one of three distributions,
decay, normal, and uniform, and determine the number of agents in each element based on
the chosen distribution.3 The instances made by using the decay distribution capture case (i).
The normal distribution corresponds to case (ii), and the uniform distribution corresponds
to case (iii). They are quite likely to occur in practical situations and are useful to deepen
the understanding of the features of our proposed technique, although we admit that this
classification is slightly rough.

Let us explain how we construct the base elements for each case. For case (i), using the
decay distribution we create elements, e.g., the rules included in MC-nets or the coalitions
included in SCG. First, we create a coalition with one randomly chosen agent. Then we

3 The decay distribution generates the number of agent in each element as follows: starting with 1, repeatedly
increment the size of the element with probability α until the size is not incremented or the size of the element
equals to |A|, where α = 0.55. For convenience, we partly use the Combinatorial Auction Test Suite [16] to
create coalitions with arbitrary distribution.
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repeatedly add a new random agent with probability α until an agent is not added or the
element includes all the agents, where α = 0.55. For case (ii), the size of element |S| is
drawn from the normal distribution, and then we randomly add agents to the element so that
the number of agents who belong to it equals |S|. For case (iii), we use a uniform distribution
so that the size of each element |S| is consistent with the uniform distribution over [1, n].
Notice that for any of the distributions, the value of each element is drawn from uniform
distribution (0, |S| × 10].

ForMC-nets, each of the elementswith their values corresponds to each rule r and its value
vr . We apply each element to rule (

∧
a∈S a) → vr andmodify each rule by randomlymoving

an agent from positive to negative literals with probability p = 0.2. For embedded MC-nets,
we further repeatedly add a new condition of a rule (L1) → ver with probability β = 0.15
until a new one is not added any more. We here create a new condition, i.e., conjunction
of literals over A as we construct base elements from each probability distribution. Finally,
for both MC-nets and embedded MC-nets, we pick some rule with probability q = 0.2 and
convert the positive values drawn from (0, |S| × 10] to negative values [−|S| × 10, 0). Note
that there is no problem instance such that some coalition has a negative value computed
from the positive and negative value rules, i.e., in all of the generated problem instances,
v(S) > 0 holds for all S ⊆ A.

For SCG, each of the elements with values corresponds to each coalition and its value. We
apply each element to coalition S with value v(S). As we explained, we generate the sizes
of coalitions included in SCG based on each probability distribution and specify the values
from the uniform distribution (0, |S| × 10]. For SCGs in MID, we create a set of coalitions
for each issue that has the identical number of elements. We also fix the number of issues at
five.

In our experiments, we fix the number of all agents, which we refer to as #agents, and
vary the number of elements in a compact representation. We here refer to the number of
rules as #rules and the number of coalitions as #coali tions. Because we fix #agents, the
characteristic (or partition) functions have the same size across #rules or #coali tions. Thus,
the difficulty of each instance is influenced by #rules or #coali tions.

Through the following experiments, we generate 100 problem instances for each combi-
nation of cases and the representations show the performance of the geometric average of
the instances. Also, we set the time limit to 105 msec; if the runtime of the solver (CPLEX)
exceeds this time limit, we terminate the execution and exclude this problem instance when
calculating the average runtime.

4.2 MC-nets and embedded MC-nets

This subsection explores the performance of the standard and embedded MC-nets. Fig-
ures 2 and 4 illustrate the average runtimes of 100 problem instances for each distribution on
the y-axis. Figures 3 and 5 show the ratio of instances where the optimal coalition structure
is obtained within a time limit of 105 msec.

For case (i) where rules are generated from the decay distribution, we set #agents = 100
and vary the number of rules #rules in the (embedded) MC-nets from 50 to 150 (the x-axis).
Figure 2 shows that the runtimes of MC-nets gradually increase and we can handle instances
with up to 150 rules. In particular, when #rules is less than 100, ourMIP formulations provide
optimal coalition structures within less than 104 msec on average and solve every instance
within the time limit, as described in Fig. 3. In contrast, when #rules exceeds 100, some
instances cannot be solved within the predetermined time limit. The number of unsolved
instances increases in #rules. In fact, when #rules = 130, we can solve 80% (82/100) of
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Fig. 2 Average runtimes
(MC-nets and embedded
MC-nets; decay)
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Fig. 3 #Instances solved within
105 ms (MC-nets and embedded
MC-nets; decay)
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Fig. 4 Average runtimes
(MC-nets and embedded
MC-nets; normal and uniform)
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the instances in 105 msec, while when #rules = 150, we can solve only 25% (25/100) of
them.

Turning to the difference between the standard and embedded MC-nets, it is relatively
small and is magnified when the number of rules increases. When #rules is 100, the differ-
ences are at most 3× 103 msec across #rules, and when it is 150, they reach 104 msec. The
magnitude of the differences is affected by the number of constraints in Definition 14, which
is essentially the number of embedded rules. Because we herein assume that a new embedded
rule is added with probability β = 0.15, only 15 ∼ 20 embedded rules are generated for 100
rules.
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Fig. 5 #Instances solved within
105 ms (MC-nets and embedded
MC-nets; normal and uniform)
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Let us examine cases (ii) and (iii) for the normal and uniform distributions, whose tenden-
cies closely resemble each other. Figure 4 illustrates the runtimes and Fig. 5 shows the ratio
of the solvable instances within the time limit. For those cases, we reduce #agents from 100
to 10 and vary #rules in (embedded) MC-nets from 10 to 50. We discuss why the instance
size is rather smaller than the case for the decay distributions later. Note that we here use
normal distribution N (8, 1) with a mean of 8 and a variance of 1 from which we draw the
number of agents involved in each rule.

Figure 4 shows that our MIP formulations for cases (ii) and (iii) take even more time to
obtain the solutions than for case (i), although the instance sizes are rather small. In fact,
the upper limit of #rules, with which they provide a solution within the time limit, is only
50 for the cases (ii) and (iii), while it reaches 150 for case (i). When #rules = 50, case (i)
takes 71 msec to obtain the solutions, but case (ii) requires about 61309 msec. Furthermore,
Fig. 5 reveals that many instances are not solvable in a reasonable amount of time. Even with
#rules = 30, for both normal and uniform distributions, 34/100 and 5/100 instances could
not be solved within the time limit. Especially for the embedded MC-nets, we can solve no
instances for the normal distribution when #rules = 50.

Let us briefly discusswhy the normal or uniformdistribution generatesmanymore difficult
instances than the decay distribution. One key reason can be found in the fact that the rules
generated from the latter tend to involve fewer agents than those from the former. An arbitrary
pair of rules in an instance is less likely to share some agents for the decay distribution than for
the normal or uniform distribution. For example, for ten agents, a rule involves approximately
three agents for the decay distribution, while one involves approximately eight agents for
the normal distribution. Thus, a pair of rules from the decay distribution shares fewer agents
than one from the other distributions. Consider our MIP formulations with a set of MC-net
rules as a graph. A graph of an instance from the decay distribution is sparser than one from
the normal or uniform distribution. In particular, the latter likely constructs a complete graph
with many constraints as edges. Therefore, the graphs are much less complicated for case
(i) than case (ii) or (iii). To solve cases (ii) or (iii), we need to explore a huge amount of
combinations of associated rules.

The other is the sharp increase of the number of the dummy rules. To solve an instance
with negative value rules, we must create constraints for each agent involved in each negative
value rule. For example, if a rule involves eight agents, we require seven dummy rules for
each negative value rule. Since a rule likely involves more agents for the normal or uniform
distribution than for the decay distribution, the required number of dummy rules increases,
and our MIP formulations face an increasing number of constraints.
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Fig. 6 Average runtimes (SCG;
decay, normal, and uniform)
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4.3 SCG and SCGs in MID

This subsection evaluates the performance of SCG and SCGs in MID. First, we explain
how well we perform on SCG in our settings. Figure 6 illustrates the average runtimes of 100
problem instances for each distribution on the y-axis. We set #agent = 1000 and vary the
number of coalitions #coali tions from 1000 to 10000 (the x-axis). Note that we use normal
distribution N (900, 502) with a mean of 900 and a variance of 502 from which we draw the
number of agents involved in each element for case (ii).

Figure 6 shows that our MIP formalization can handle SCG instances with up to 10, 000
coalitions. From this result, we can solve instances with more base elements by applying the
MIP formalization based on SCG, compared with the MIP formalization based on MC-nets.
For example, for the decay distribution (case (i)), SCG takes 908 msec to obtain the solution
on average when it handles 10, 000 coalitions (instances made from 10, 000 base elements),
while the standard MC-nets takes 1568 msec when it has only ninety rules (instances made
from 90 base elements). For the normal and decay distributions (cases (ii) and (iii)), SCG is
still easier to solve thanMC-nets, although the runtimes are much longer than for case (i). For
example, when #coali tions = 10000, cases (ii) and (iii) are performed in 23574 and 26094
msec, while case (i) takes 908 msec. Also, there is only a slight difference between cases (ii)
and (iii), which is at most approximately 3000 msec across the number of coalitions. Note
that, in those cases, we can solve all the SCG instances within 105 msec (the time limit).

These results show that the MIP formulation of SCG is more scalable than that of MC-
nets with regard to the number of base elements. Note that this does not directly means SCG
is better than MC-nets. When a game is represented by MC-nets and SCG, MC-nets tends
to be more concise. For example, let us consider a game represented by rules of MC-nets
R, where each rule r ∈ R consists of only positive literals. To transform R into SCG,
firstly, we need |R| pairs of a coalition and its value, each of which has the form: (Pr , vr ),
where Pr is the set of positive literals and vr is the value of rule r . Next, for each set of
rules R′ that shares some agents in positive literals, we need a pair (

⋃
r∈R′ Pr ,

∑
r∈R′ vr ).

For example, assume four agents a, b, c, and d and three rules r1 : (a ∧ b) → v1, r2 :
(a ∧ c) → v2, r3 : (a ∧ d) → v3. By applying the above argument, SCG of this game is
given as: SCG = {({a, b}, v1), ({a, c}, v2), ({a, d}, v3), ({a, b, c}, v1 + v2), ({a, b, d}, v1 +
v3), ({a, c, d}, v2 + v3), ({a, b, c, d}, v1 + v2 + v3)}. In this case, SCG contains 7 pairs,
which is larger than |R|. If some rule in MC-nets contains negative literals, transforming
MC-nets to SCG becomes more complicated.
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Fig. 7 Average runtimes (SCGs
in MID; decay, normal, and
uniform)
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Fig. 8 #Instances solved within
105 ms (SCGs in MID; decay,
normal, and uniform)

 0

 20

 40

 60

 80

 100

 50  100  150

N
um

be
r o

f i
ns

ta
nc

es

Number of coalitions

SCGs in MID; decay
SCGs in MID; normal

SCGs in MID; uniform

Second, let us turn to SCGs in MID. Figure 7 illustrates the average runtimes and Fig. 8
shows the ratio of instances where we obtain the optimal coalition structures within the time
limit of 105 msec. Recall that we fix the number of issues to five. We let the sizes of the
problem instances be smaller than SCG. Precisely, we set #agent = 100 and vary the number
of coalitions #coali tions from 50 to 150. The mean and variance for the normal distribution
remain unchanged.

Figure 7 reveals that SCGs in MID is easier to solve than MC-nets, but harder than SCG.
While, for case (i), the runtimes never exceed 104 msec across #coali tions, for cases (ii) and
(iii), they take at least 104 msec for any #coali tions. Also, for case (i), we can solve all the
instances within the time limit. However, for the other two cases, we could not solve some
instances, particularly when #coali tions exceeds 90. In fact, for case (ii), when #coali tions
is 120, we can solve only 16/100 instances, while for case (iii), when it is 110, we can solve
only 29/100 instances. If we further increase the number of coalitions, we could not solve
the instances at all.
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5 Conclusion

This paper provides MIP formulations for CSG problems by utilizing four compact repre-
sentation schemes: for characteristic function games, MC-nets, SCG, and SCGs in MID, and
for partition function games, embedded MC-nets. Though we proved that CSG problems
under these representations are NP-hard and inapproximable, we could solve instances of
significant size by off-the-shelf optimization packages, such as CPLEX and GUROBI. Our
simulation reveals that our proposed methods with MC-nets or SCGs in MID solved the
problems with 150 rules or coalitions within 105 msec, and those with SCG solved the prob-
lem with up to 10000 coalitions within 105 msec. Future works will develop algorithms (i)
that can find an optimal solution more efficiently, (ii) that can return a suboptimal solution
in any time, and (iii) that can find an approximate solution quickly by utilizing constraint
optimization techniques.
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Appendix: Transformation algorithms for MC-nets with negative value
rules

In the Apendix, we explain the details of results related to the naïve approach. We can
guarantee that the full transformation algorithm terminates, i.e., the following theorem holds.

Theorem 11 The full transformation algorithm terminates.

Proof Byone iteration of this algorithm, negative value rule rx is eliminated if Lx∧¬Li |� ⊥
and vi ≥ vx . If Lx ∧ ¬Li �|� ⊥, a set of negative value rules is added in Step 7, but the
conditions of these rules, i.e., Lx ∧ ¬Li , are more specific than Lx . Also, if vi < vx , a new
negative value rule is added in Step 6, but its condition, i.e., Lx ∧ Li , is more specific than
Lx and also disjoint with Lx ∧¬Li . Furthermore, the value of this rule, i.e., vi −vx , is closer
to 0 than original value −vx . Thus, by one iteration of this algorithm, the conditions of the
negative value rules become more specific and/or the negative value becomes closer to 0.
Therefore, this algorithm cannot be infinitely iterated and will eventually terminate. ��
Example 9 Let us describe the full transformation algorithm, assuming rx : (Lx ) → −1,
where Lx = a ∧ d ∧ e, and r1 : (L1) → 1, where L1 = a ∧ ¬b ∧ ¬c, are selected.
Since L1 ∧ ¬Lx = (a ∧ ¬b ∧ ¬c) ∧ (¬a ∨ ¬d ∨ ¬e) �|� ⊥ holds, we create non-basic rule
(L1∧¬Lx ) → 1 in Step 5 andwe obtain two basic rules from this rule: (a∧¬b∧¬c∧¬d) →
1 and (a ∧ ¬b ∧ ¬c ∧ d ∧ ¬e) → 1. We do not create any new rule in Step 6 since
vr1 + vrx = 1 − 1 = 0. Finally, since ¬L1 ∧ Lx = (¬a ∨ b ∨ c) ∧ (a ∧ d ∧ e) �|� ⊥ holds,
we create non-basic rule (¬L1 ∧ Lx ) → −1 and we obtain two basic rules from this rule:
(a ∧ b ∧ d ∧ e) → −1 and (a ∧ ¬b ∧ c ∧ d ∧ e) → −1.
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Fig. 9 # Of Generated rules
(Example 10)
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With the full transformation algorithm, we can eliminate all of the negative value rules.
However, this approach is not scalable. There exists an instance where the number of newly
generated rules becomes Ω(n2) using the full transformation algorithm.

Example 10 Consider the following rules:

r0: (p0 ∧ ¬n1 ∧ ¬n2 ∧ · · · ∧ ¬nk) → 1
r1: (p1 ∧ n1) → 1
r2: (p2 ∧ n2) → 1
. . .

rk : (pk ∧ nk) → 1
rx : (p0 ∧ p1 ∧ p2 ∧ . . . ∧ pk) → −1.

This rule set contains k + 1 positive value rules and one negative value rule, where the
total number of agents is 2k + 1. Figure 9 shows the number of newly generated rules from
these rule sets by varying k. The number of newly generated rules becomes Ω(k2), which is
also Ω(n2).

Can we reduce the number of required rules using a more clever encoding trick? No,
because the following theorem holds:

Theorem 12 To represent the characteristic function in Example 10 only using positive value
rules, we need Ω(n2) rules.

Proof For all 1 ≤ i < j ≤ k, we denote {p0, p1, . . . , pk , ni , n j } as Si, j . For Si, j , since only
rules rx , ri , r j are applicable, v(Si, j ) equals 1. Assume that set of positive value rules R′+
represents v. There must be at least one rule in R′+ that is applicable to Si, j . Represent such
a rule as ri, j .

Now, we show that ri, j is not applicable to any Si ′, j ′ , where 1 ≤ i ′ < j ′ ≤ k and
i �= i ′ ∨ j �= j ′. We derive a contradiction by assuming that ri, j is applicable to Si ′, j ′ .

When i = i ′ or i = j ′, consider coalition S = {p0, p1, . . . , pk, ni }. For S, since only
rules rx , ri are applicable, v(S) equals 0. However, we show that ri, j is applicable to S, and
thus v(S) cannot be 0. ri, j is not applicable to S, if (i) its positive literals include agent nl ,
where l �= i , or (ii) its negative literals include at least one of {p0, p1, . . . , pk, ni }. For (i), if
l = j , ri, j is not applicable to Si ′, j ′ . Also, if l �= j , ri, j is not applicable to Si, j . For (ii), ri, j is
not applicable to either Si, j and Si ′, j ′ . This contradicts the assumption that ri, j is applicable
to both Si, j and Si ′, j ′ . We can use a similar argument for the cases where j = i ′ or j = j ′.
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Then consider the case where i, j, i ′, j ′ are different from each other and coalition S =
{p0, p1, . . . , pk}. For S, since only rules rx , r0 are applicable, v(S) equals 0. However, we
show that ri, j is applicable to S, and thus v(S) cannot be 0. ri, j is not applicable to S if (i)
its positive literals include agent nl , where 1 ≤ l ≤ k, or (ii) its negative literals include at
least one of {p0, p1, . . . , pk}. For (i), if l = i or l = j , ri, j is not applicable to Si ′, j ′ . If l �= i
and l �= j , ri, j is not applicable to Si, j . For (ii), ri, j is not applicable to either Si, j and Si ′, j ′ .
This contradicts the assumption that ri, j is applicable to both Si, j and Si ′, j ′ .

Thus, for each i, j , where 1 ≤ i < j ≤ k, there must be distinct element ri, j in R′+, and
the number of elements in R′+ must be at least k(k − 1)/2, which is Ω(n2). ��

The full transformation algorithm can be easily extended to embedded MC-nets. We
replace a condition such as Li to the condition for embedded rule Cer , which is a pair of
internal condition L1 and external conditions L2, . . . , Ll .

One tricky point is creating the negation ofCer . Recall that embedded rule er is applicable
to coalition S inCS if L1 is applicable to S and each L2, . . . , Ll is applicable to some coalition
S′ ∈ CS \ {S}. Thus, er is not applicable to coalition S in CS if (i) L1 is not applicable to
S, (ii) L1 is applicable to S, but L2 is not applicable to any coalition in CS \ {S}, (iii) L1 is
applicable to S and L2 is applicable to some coalition S′ ∈ CS \ {S}, but L3 is not applicable
to any coalition inCS\{S}, and so on. Handling case (i) is easy. Let us examine how to handle
case (ii). Assume L2 = p1 ∧ p2. We must guarantee that for any coalition S′ ∈ CS \ {S},
¬L2 = ¬p1 ∨ ¬p2 holds. If S′ does not contain p1, then ¬L2 holds. If S′ contains p1, then
S′ must satisfy ¬p2. Since there exists exactly one coalition that contains p1, it is sufficient
to guarantee that there exists some coalition S′ ∈ CS \ {S}, such that p1 ∧ ¬p2 holds.

To summarize, to represent¬Cer , whereCer is a pair of internal condition L0 and external
conditions L1, . . . , Ll , we need the following conditions (here, we assume each Li = li1 ∧
li2 ∧li3 ∧ . . .): (i) (¬L0), (ii) (L0)|(l11 ∧¬l12), (L0)|(l11 ∧l12 ∧¬l13),…, (iii) (L0)|(L1)(l21 ∧
¬l22), (L0)|(L1)(l21 ∧ l22 ∧ ¬l23), and so on.
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